检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王霖东 WANG Lindong(The 4th Engineering Co.,Ltd.,China Railway 18th Bureau Group,Nanjing 210000,China)
机构地区:[1]中铁十八局集团第四工程有限公司,江苏南京210000
出 处:《国防交通工程与技术》2022年第6期38-40,7,共4页Traffic Engineering and Technology for National Defence
摘 要:为了保证基坑工程和周边建筑物的安全,需要对基坑变形进行预测。BP神经网络因其权阈值易陷入局部最优的问题导致无法准确进行基坑变形预测。融合蚁群算法的全局最优特点,提取BP神经网络全局最优权阈值。通过定量精度分析结果,验证融合预测模型的准确性,为基坑变形预测提供了有效的技术手段。In order to ensure the safety of foundation pit engineering and surrounding buildings,it was necessary to predict the deformation of foundation pit.In the prediction process,it was easy for BP neural network to generate the problem of local optimal weight threshold,which made it unable to accurately predict the deformation of foundation pit.In this paper,the global optimal characteristics of the ant colony algorithm were combined to extract the global optimal weight threshold of the BP neural network.Through quantitative results,the fusion prediction model was verified.The accuracy of the prediction model provided technical methods for the prediction of foundation pit deformation.
分 类 号:TU753[建筑科学—建筑技术科学] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249