基于视点差异和多分类器的三维模型分类  

3D Model Classification Based on Viewpoint Differences and Multiple Classifiers

在线阅读下载全文

作  者:丁博[1] 范宇飞 高源 何勇军[1] DING Bo;FAN Yufei;GAO Yuan;HE Yongjun(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080

出  处:《电子与信息学报》2022年第11期3977-3986,共10页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61673142);黑龙江省自然科学基金(JJ2019JQ0013)。

摘  要:基于视图的3维模型分类方法与深度学习融合能有效提升模型分类的准确率。但目前的方法将相同类别的3维模型所有视点上的视图归为一类,忽略了不同视点上的视图差异,导致分类器很难学习到一个合理的分类面。为解决这一问题,该文提出一个基于深度神经网络的3维模型分类方法。该方法在3维模型的周围均匀设置多个视点组,为每个视点组训练1个视图分类器,充分挖掘不同视点组下的3维模型深度信息。这些分类器共享1个特征提取网络,但却有各自的分类网络。为了使提取的视图特征具有区分性,在特征提取网络中加入注意力机制;为了对非本视点组的视图建模,在分类网络中增加了附加类。在分类阶段首先提出一个视图选择策略,从大量视图中选择少量视图用于分类,以提高分类效率。然后提出一个分类策略通过分类视图实现可靠的3维模型分类。在ModelNet10和ModelNet40上的实验结果表明,该方法在仅用3张视图的情况下分类准确率高达93.6%和91.0%。The integration of view-based 3D model classification and deep learning can effectively improve the classification accuracy.However,current methods consider that the views from different viewpoints of 3D model with same category belong to the same category and ignore the view differences,which makes it difficult for the classifier to learn a reasonable classification surface.To solve this problem,a 3D model classification method based on deep neural network is proposed.The multiple viewpoint groups are set evenly around the 3D model in this method,and the view classifier for each viewpoint group is trained for fully mining the deep information of the 3D model in different viewpoint groups.These classifiers share a feature extraction network,but have their own classification network.In order to extract the discriminative view features,the attention mechanism is added to the feature extraction network;In order to model the views of the non-viewpoint group,additional classes are added to the classification network.In the classification stage,a view selection strategy is first proposed,which can use a small number of views to classify the 3D model and improve classification efficiency.Then a classification strategy is proposed to achieve reliable 3D model classification through classification view.Experimental results on ModelNet10 and ModelNet40 show that the classification accuracy can reach up to 93.6%and 91.0%with only 3 views.

关 键 词:3维模型分类 卷积神经网络 视点差异 分类器 注意力机制 

分 类 号:TN911.73[电子电信—通信与信息系统] TP315.69[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象