检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈龙 CHEN Long(Schoolof Philosophy,Beijing Normal University,Beijing,100875)
出 处:《自然辩证法通讯》2022年第11期17-25,共9页Journal of Dialectics of Nature
基 金:中央高校基本科研业务费专项资金“数学直觉,机器学习与创造力”(项目编号:2019NTSS35)。
摘 要:将非形式的“能行可计算性”概念等同于严格的数学概念“一般递归函数”或是“图灵可计算性”,这被称之为“丘奇-图灵论题”(Church-Turing Thesis,CTT),它被视为用逻辑的方式来澄清概念的一个典范。本文以哥德尔在可计算性理论发展中的角色为参照点,从历史考察以及哲学分析的角度来试图回答这样两个相关的问题:虽然哥德尔已经掌握了足够的技术细节,但是他为什么不愿意提出一个后来被证明是和CTT等价的“哥德尔论题”?其次,尽管对丘奇论题非常不满,但是为什么哥德尔后来还是为图灵的分析信服而最终愿意相信CTT的正确性?本文将从哥德尔的概念实在论视角出发提出一个不同于费佛曼和戴维斯的回答,并且以概念分析的公理化方法考察图灵论题相对于丘奇论题的优越性,以期更好地理解哥德尔的实在论和CTT所带来的认识论挑战。To identify the informal concept of ‘‘effective calculability’’ with a rigorous mathematical notion like ‘‘general recursiveness’’ or ‘‘Turing computability’’,this is called “Church-Turing Thesis” and usually considered one of paradigmatic cases of conceptual clarification via logical methods.This paper,by focusing on G?del’s role in the development,attempts to answer the following two questions from both the historical and philosophical aspects:(1) why is G?del reluctant to launch a similar thesis like CTT while with all the technical points at his disposal?(2) although dissatisfied with Church’s Thesis,why is G?del eventually convinced by Turing’s analysis and CTT?I will propose a solution different from Feferman and Davis in light of G?del’s conceptual realism and explore the superiority of Turing’s Thesis over Church’s Thesis from the perspective of axiomatic method of conceptual analysis,hoping to shed light on both G?delian realism and the epistemological challenges raised by CTT.
分 类 号:N0[自然科学总论—科学技术哲学] O1[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33