基于多智能体强化学习的社交网络舆情增强一致性方法  

Consensus Opinion Enhancement in Social Network with Multi-agent Reinforcement Learning

在线阅读下载全文

作  者:谢光强[1] 许浩然 李杨[1] 陈广福 Xie Guang-qiang;Xu Hao-ran;Li Yang;Chen Guang-fu(School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China)

机构地区:[1]广东工业大学计算机学院,广东广州510006

出  处:《广东工业大学学报》2022年第6期36-43,共8页Journal of Guangdong University of Technology

基  金:国家自然科学基金资助项目(61972102)。

摘  要:针对社交网络舆情动力学的增强一致性问题,提出了一种基于多智能体强化学习的智能感知模型(Consensus Opinion Enhancement with Intelligent Perception,COEIP)。在舆情动力学场景下的马尔科夫决策过程中,首先通过双向循环神经网络设计了智能体的决策模型以解决智能体不定长感知的问题。然后通过差分奖励的思想针对收敛效率、连通度和通信代价三类目标,设计了有效的奖励函数。最后为优化COEIP模型,设计了基于策略梯度的多智能体探索与更新算法,让智能体在彼此交互过程中,通过奖励值自适应学习具备多目标权衡能力的邻域选择策略。大量仿真验证了COEIP在社交网络舆情动力学场景下可以有效调和智能体间的矛盾,降低系统稳定时的簇数,进而增强系统的舆情一致性。本模型为大规模社交网络下提高人群意见的统一性提供了新的解决方案,具有重要的理论指导意义。Aiming at the problem of consensus enhancement in opinion dynamics of social network,a consensus opinion enhancement with intelligent perception(COEIP)model based on multi-agent reinforcement learning is proposed.In the Markov decision-making process in opinion dynamics,firstly,the decision-making model of agent is designed through bidirectional recurrent neural network to solve the problem of uncertain-length perception.Then,through the idea of difference reward,an effective reward function is designed for the three objectives of convergence efficiency,connectivity and communication cost.Finally,in order to optimize COEIP model,a multiagent exploration and collaborative update algorithm based on policy gradient is designed,which can enable agents to adaptively learn the neighborhood selection strategy with multi-objective trade-off ability through the reward value in the process of interaction with each other.A large number of simulations verify that COEIP can effectively reconcile the contradictions between agents and reduce the number of clusters when the system is stable in the scenario of opinion dynamics of social network,thus enhancing the consensus opinion of the system.This model provides a new solution for improving the unity of people's opinions under large-scale social networks,which has important theoretical guiding significance.

关 键 词:多智能体系统 社交网络 观点演化 增强一致性 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象