一种基于NSST的双频高分辨SAR图像融合方法  

A NSST-based fusion method for dual-frequency high-resolution SAR images

在线阅读下载全文

作  者:黄骏南 安道祥 陈乐平 冯东 周智敏[1] HUANG Junnan;AN Daoxiang;CHEN Leping;FENG Dong;ZHOU Zhimin(College of Electronic Science,National University of Defense Technology,Changsha 410073,China)

机构地区:[1]国防科技大学电子科学学院,长沙410073

出  处:《空天预警研究学报》2022年第3期157-161,共5页JOURNAL OF AIR & SPACE EARLY WARNING RESEARCH

基  金:国家自然科学基金项目(62101566,62101562);湖南省自然科学杰出青年基金项目(2022JJ10062)。

摘  要:针对传统融合方法不能很好地处理高分辨SAR图像的大量边缘、纹理等细节信息的问题,提出一种基于非下采样剪切波变换(NSST)的双频高分辨SAR图像融合方法.首先利用NSST对源图像进行多尺度分解,得到高、低频系数;然后基于改进的非负矩阵分解合并低频系数,并利用改进的拉普拉斯能量和合并高频系数;最后利用NSST逆变换,对融合后的高、低频系数进行重构,得到融合图像.实验结果表明,与传统方法相比,本文方法能对源图像中的纹理、边缘等细节特征有较好的融合效果,大大缩短了运算时间.机载SAR实测数据验证了本文方法的有效性和实用性.In order to solve the problem that the traditional fusion method cannot well process the large amount of detail information such as edge and texture contained in high-resolution SAR image,this paper propos-es a NSST-based image fusion method for dual-frequency high-resolution SAR images.Firstly,the non-subsam-pled Shearlet transform(NSST)is used to give the source images a multiscale decomposition so as to obtain the low-pass bands and high-pass bands.Then,the improved non-negative matrix factorization is used to decompose and merge the low-pass bands,and the new sum of modified Laplacian is applied to merge the high-pass bands.Fi-nally,the fused low-pass bands and high-pass bands are reconstructed to obtain the final fused image by use of the inverse NSST.Experimental results show that,compared with the traditional methods,the proposed method has a better fusion effect on the textures,edges and other details,and also greatly shortens the computation time.The ef-fectiveness and practicability of the proposed method are verified by processing the airborne SAR data.

关 键 词:图像融合 双频SAR 非下采样剪切波变换 非负矩阵分解 拉普拉斯能量和 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象