检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐国艳[1] 熊绎维 周彬[1] 陈冠宏 XU Guoyan;XIONG Yiwei;ZHOU Bin;CHEN Guanhong(Key Laboratory of Autonomous Transportation Technology for Special Vehicles,Ministry of Industry and Information Technology,School of Transportation Science and Engineering,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学交通科学与工程学院特种车辆无人运输技术工业和信息化部重点实验室,北京100191
出 处:《北京航空航天大学学报》2022年第11期2138-2145,共8页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金(51775016)。
摘 要:为解决强化学习算法在自主导航任务中动作输出不连续、训练收敛困难等问题,提出了一种基于近似策略优化(PPO)算法的移动平台自主导航方法。在PPO算法的基础上设计了基于正态分布的动作策略函数,解决了移动平台整车线速度和横摆角速度的输出动作连续性问题。设计了一种改进的人工势场算法作为自身位置评价,有效提高强化学习模型在自主导航场景中的收敛速度。针对导航场景设计了模型的网络框架和奖励函数,并在Gazebo仿真环境中进行模型训练,结果表明,引入自身位置评价的模型收敛速度明显提高。将收敛模型移植入真实环境中,验证了所提方法的有效性。This paper presents an autonomous navigation method based on proximal policy optimization(PPO) algorithm for mobile platform.In this method,GNSS and LADAR are used for sensing environment information.To define the state of reinforcement learning model,an ego position evaluation method is introduced based on improved artificial potential field algorithm.After that,on the basis of PPO algorithm,a kind of action policy function is designed based on Gaussian distribution,which solves the continuity problem of the vehicle linear velocity and yaw velocity.Furthermore,the network framework and reward function of the model are also designed for navigation scenarios.In order to train the navigation model,a virtual environment based on Gazebo is built.The training results show that the ego position evaluation method obviously helps to improve the speed of model convergence.Finally,the navigation model is transplanted to a real environment,which verifies the effectiveness of the proposed method.
关 键 词:近似策略优化算法 移动平台 自主导航 强化学习 人工势场
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.158.72