检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚金海[1] 邹家骏 Yao Jinhai;Zou Jiajun(Department of Economics,the Party School of CPC Jiangxi Provincial Committee,Nanchang 330108,China)
机构地区:[1]中共江西省委党校经济学教研部,南昌330108
出 处:《统计与决策》2022年第21期48-52,共5页Statistics & Decision
基 金:江西省社会科学“十四五”(2022年)基金重点项目(22ST02)。
摘 要:居民消费价格指数(CPI)是宏观经济中的前瞻性指标,为经济政策的制定提供数据支撑,发挥指导作用。文章利用CPI的月度数据构建基于小波分解的SVM-ARIMA组合模型,实现了对CPI的精准预测。首先,对2000—2019年的居民消费价格指数序列进行小波分解;然后,对分解后的居民消费价格指数序列分别利用ARIMA模型和SVM模型进行预测;最后,将预测结果进行整合形成对居民消费价格指数的组合预测模型,并选用2020年的实际CPI月度数据与模型预测数据进行有效性验证。结果表明:组合模型的平均绝对百分比误差(MAPE)与均方根误差(RMSE)分别为0.5383%和0.6604%,相较于ARIMA时间序列模型和SVM模型实现了极大的改进。此外,该组合模型的预测分析框架具有较强的适应性和扩展性,可用于其他相同特征类型的时间序列数据的模拟预测。The consumer price index(CPI) is a prospective indicator in the macro economy,which provides data support and guidance for the formulation of economic policies.This paper uses the monthly data of CPI to construct a SVM-ARIMA combined model based on wavelet decomposition to achieve accurate prediction of CPI.First,the CPI series from 2000 to 2019 is decomposed by wavelet.Then,ARIMA model and SVM model are used to predict the decomposed CPI series.Finally,the above prediction results are integrated to form a combined prediction model for CPI,and the actual monthly CPI data in 2020 and the model forecast data are selected for validity verification.The results show that the MAPE and RMSE of the combined model are0.5383% and 0.6604%,respectively,which achieve a great improvement compared with ARIMA time series model and SVM model.In addition,the predictive analysis framework of the combined model has strong adaptability and scalability and can be used to simulate and predict other time series data with the same characteristic.
关 键 词:居民消费价格指数 小波分解 SVM模型 ARIMA模型
分 类 号:O212[理学—概率论与数理统计] F064.1[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33