基于NOMA的网络切片复用用户匹配及功率分配  被引量:2

Multiplexing Users Matching and Power Allocation of Network Slicing Based on NOMA

在线阅读下载全文

作  者:黎昆涛 刘海林[1] LI Kun-tao;LIU Hai-lin(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510630,China)

机构地区:[1]广东工业大学数学与统计学院,广州510630

出  处:《无线通信技术》2022年第3期1-6,共6页Wireless Communication Technology

基  金:国家自然科学基金资助项目(No.62172110);广东省国际合作项目(No.2020A0505100056)。

摘  要:为了满足通信业务多样化需求,缓解5G频谱紧缺问题,本文提出了基于NOMA的网络切片资源分配模型。该模型以最大化网络切片总吞吐量为目标,考虑复用用户功率分配关系,切片最小容量以及用户速率的比例公平性约束,并设计了一种启发式的复用用户匹配及功率分配算法。首先根据信道条件定义复用用户的主次关系,选择满足约束条件的主用户后,持续匹配次用户,直至达到RB的最大复用数为止,再使用粒子群算法优化RB上主次用户的功率分配,以使系统吞吐量最大化。实验表明,该模型和算法在保证切片隔离性的同时能够满足用户的公平性要求,并且系统吞吐量比OMA系统提高了26.1%-55.6%。To satisfy the diversity of requirements for different communication services and alleviate the shortage of 5G spectrum resources, a network slice resource allocation model based on NOMA are proposed. The model aims to maximize the total throughput of network slices, considers the power allocation relationship of multiplexing users, the minimum capacity of slices, and the proportional fairness of users rate, and a heuristic multiplexing users matching and power allocation algorithm is designed. Firstly, the primary and secondary relationship of multiplexing users is defined according to the channel conditions. After selecting the primary user that meet the constraints, the secondary users are continuously matched until the maximum multiplexing number of RB is reached, and then the particle swarm optimization algorithm is used to optimize the power allocation of primary and secondary users on RB to maximize the system throughput. Simulation results show that the proposed model and algorithm can satisfy the fairness requirements of users while ensuring the isolation of slices, and total throughput is improved by 26.1%-55.6% compared with OMA system.

关 键 词:网络切片 非正交多址接入 用户速率比例公平性 启发式算法 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象