检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王珠 刘佳璇 WANG Zhu;LIU Jia-xuan(Department of Automation,China University of Petroleum,Beijing 102249,China)
机构地区:[1]中国石油大学(北京)自动化系,北京102249
出 处:《控制理论与应用》2022年第9期1758-1768,共11页Control Theory & Applications
基 金:国家自然科学基金项目(61703434);中国石油大学(北京)科研基金项目(2462020YXZZ023)资助.
摘 要:由于工业过程具有强非线性、动态特性与慢时变性,其完整性建模相对较难.针对工业过程的现有软测量技术并未综合考虑过程的非线性和动态特性,本文提出了一种依赖模型阶次的GRU(MOb-GRU)神经网络软测量模型,针对非线性动态过程进行全动态建模.首先,在MOb-GRU的结构选择上,本文根据所研究实际对象的动态特性复杂程度确定网络的总模块数.另外,MOb-GRU能灵活设置反向更新的单元数,这种设置打破了传统GRU只能从第1个模块开始输出的限制.其次,为使记忆网络以较快的速率收敛到最优,本文分别设计了基于自适应学习率和学习率矩阵的网络训练算法.接着,仿真实验分别选取了典型的单变量与多变量非线性动态过程,并采用MOb-GRU神经网络对其进行建模和预测.最后,仿真结果证实了MOb-GRU网络结构的合理性以及训练算法的高效性.Modeling the integrity of industrial process is a relatively difficult task due to its strong nonlinearity,dynamic characteristics and slow time variability.Though there exist some soft sensing technologies for industrial process,they fail to consider the nonlinear and dynamic characteristics comprehensively of the process.Therefore,this paper proposes a model order based gated recurrent unit(MOb-GRU)neural network soft sensor model for fully-dynamic modeling of nonlinear dynamic process.Specifically,firstly,in terms of the MOb-GRU structure selection,this paper determines the total module number of the network according to the complexity of dynamic characteristics of the actual object.Moreover,the MOb-GRU can flexibly set the number of units for reverse update,which breaks the limitation that the traditional GRU can only output from the first module.Secondly,in order to make the memory network converge to the optimal at a faster rate,this paper designs the network training algorithms based on the adaptive learning rate and the learning rate matrix,respectively.Then,the typical univariate and multivariable nonlinear dynamic processes are selected in the simulation experiment,and the MOb-GRU neural network is used to model and predict them.Finally,the rationality of MOb-GRU network architecture as well as the high efficiency of the training algorithms is demonstrated through the simulation results.
关 键 词:软测量技术 MOb-GRU 非线性动态 自适应学习率 神经网络
分 类 号:TG806[金属学及工艺—公差测量技术] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7