检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张修懿 陈长兴[1] 杜娟[1] 李佳 成宽洪 ZHANG Xiuyi;CHEN Changxing;DU Juan;LI Jia;CHENG Kuanhong(Department of Basic Sciences,Air Force Engineering University,Xi’an 710051,China;School of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China)
机构地区:[1]空军工程大学基础部,西安710051 [2]西安理工大学计算机科学与工程学院,西安710048
出 处:《计算机工程与应用》2022年第24期212-222,共11页Computer Engineering and Applications
基 金:国家自然科学基金(62105258);空军工程大学基础部研究生创新基金。
摘 要:为了解决YOLO系列目标检测算法存在的精度与计算成本不均衡、模型泛化性不足的问题,提出了可满足不同光照场景下目标检测需求的高精度快速的车辆与行人检测模型YOLO-Day Night and Fast(YOLO-DNF)。文中结合当下主流检测模型所使用的卷积神经网络分析卷积结构与网络深度对于主干网络特征提取能力和计算成本的影响,针对网络不同层次选取卷积结构Arrow-Block与CSP-Block搭建网络并通过量化堆叠单元的计算成本确定网络深度,提出低计算成本、高特征提取能力的ACNet网络。此外分析了白天与夜间图像的亮度差异,引入了HSV域扰动并提出亮度处理的数据增强策略,提升了模型的夜间检测精度,改善了模型泛化性不足的问题。实验结果表明:YOLO-DNF模型在SODA10M数据集仅含白天图像的训练集中训练后以每秒24.36帧的检测速率达到32.8%的全时段mAP检测精度,检测精度与速度超过目前主流检测模型。其中夜间精度达到了27.7%,扩展了模型的检测应用场景。YOLO series object detection algorithms exist unbalanced accuracy and computational cost,as well as insufficient model generalization.To address these issues,this paper proposes a high accuracy and fast vehicle and pedestrian detection model based on YOLO,called YOLO-Day Night and Fast(YOLO-DNF),which detects vehicle and pedestrian under different lighting scenarios.This paper analyses the effects of convolutional structure and network depth on the feature extraction capability and calculation cost of the backbone in relation to the convolutional neural networks used in the mainstream detection models today.Then this paper proposes an ACNet network with low computational cost and high feature extraction capability by selecting the convolutional structure arrow-block and CSP-Block for different levels of the network and determining the depth of the network by quantifying the computational cost of stacked units.In addition,the article analyses the difference in luminance between daytime and nighttime images and introduces a data enhancement strategy of HSV domain perturbation and luminance processing to enhance the detection accuracy of the model and improve the problem of insufficient generalization of the model.The experimental results show that the YOLO-DNF model achieves 32.8%detection accuracy of full time mAP at 24.36 frames per second after training in the training set of SODA10M dataset containing only daytime images,which exceeds the current mainstream detection models in terms of detection accuracy and speed.The nighttime accuracy reaches 27.7%,which improves the nighttime detection capability of the model and extends the detection application scenarios of the model.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28