蚁群算法在重介质智能化选煤过程中的应用  被引量:6

Application of Ant Colony Algorithm in Intelligent Coal Preparation Process of Dense Medium

在线阅读下载全文

作  者:周桥梁 刘妮妮 ZHOU Qiaoliang;LIU Nini(Jingzhou University,Jingzhou 434000,China;Yangtze University College of Arts and Sciences,Jingzhou 434000,China)

机构地区:[1]荆州学院,湖北荆州434000 [2]长江大学文理学院,湖北荆州434000

出  处:《煤炭技术》2022年第9期246-248,共3页Coal Technology

基  金:2020年度湖北省教育厅科学研究计划指导性项目(B2020342)。

摘  要:首先分析重介质选煤的基本原理,为后续改进悬浮液密控制算法提供了思路及理论支撑;通过建立重介质选煤优化控制的数学模型,求取系统的传递函数,并结合蚁群算法设计了重介质选煤系统悬浮液密度的控制方法;最后将基于蚁群算法与基于传统PID的重介质选煤控制进行仿真分析,蚁群算法的波动累计和较PID算法的波动累计和减少了11.5%,灰分值的均方根误差减少了45%,证明了采用蚁群算法进行控制能够保证灰分值更加稳定。Firstly,the basic principle of dense medium coal preparation is analyzed,which provides ideas and theoretical support for the subsequent improvement of the suspension density control algorithm.By establishing the mathematical model of the optimal control of dense medium coal preparation,the transfer function of the system is obtained,and the design is combined with the ant colony algorithm.The control method of the suspension density of the dense medium coal preparation system is presented.Finally,the simulation analysis of the dense medium coal preparation control based on the ant colony algorithm and the traditional PID is carried out.The cumulative sum of fluctuations of the ant colony algorithm is reduced by 11.5%compared with the cumulative sum of fluctuations of the PID algorithm,the root mean square error of the ash value is reduced by 45%,which proves that the use of ant colony algorithm for control can ensure that the ash value is more stable.

关 键 词:蚁群算法 重介质选煤 数学建模 仿真分析 

分 类 号:TD94[矿业工程—选矿]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象