检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨伟东[1,2] 王再旺 赵涵卓 侯岳峰 YANG Weidong;WANG Zaiwang;ZHAO Hanzhuo;HOU Yuefeng(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China;National Engineering Research Center for Technological Innovation Methods and Tool,Tianjin 300401,China;Beijing Sinopower iot,Beijing 100089,China)
机构地区:[1]河北工业大学机械工程学院,天津300401 [2]国家技术创新方法与实施工具工程技术研究中心,天津300401 [3]北京中力智研物联科技有限公司,北京100089
出 处:《中国地质灾害与防治学报》2022年第6期20-28,共9页The Chinese Journal of Geological Hazard and Control
基 金:重庆市教育局项目(HZ2021012)。
摘 要:滑坡周期项位移的预测,是研究地质灾害中滑坡变形至关重要的一步。由于单一模型易受偶然因素影响,且无法充分利用有效信息,导致其预测精度不高,适用性不强。基于此,文中提出了一种结合自适应粒子群算法(APSO)、支持向量机回归算法(SVR)、门控神经网络算法(GRU)的组合模型。该模型通过自适应粒子群优化算法对支持向量机回归算法进行参数寻优,确定最优参数组合,然后利用最小二乘法对APSO-SVR模型与GRU模型赋权建立最优权重比组合模型。以三峡白水河滑坡作为研究对象,选取降雨量、库水位及位移量作为周期项位移的影响因子,对模型进行训练验证,结果表明:在白水河滑坡周期项位移预测中,文中所提出的APSO-SVR-GRU组合模型与单一模型相比,具有更高的预测精度和稳定性。The prediction of landslide periodic term displacement is a crucial step in the study of landslide deformation in geological disasters.Since single prediction model is susceptible to accidental factors and cannot make full use of effective information,its prediction accuracy is not high and its applicability is not strong.In this paper,a combined prediction model combining adaptive particle swarm optimization(APSO),support vector machine regression(SVR)and gated neural network(GRU)algorithm is proposed.The model uses the adaptive particle swarm optimization algorithm to optimize the parameters of the support vector machine regression algorithm,determines the optimal parameter combination,and then uses the least square method to weight the APSO-SVR model and the GRU model to establish the optimal weight ratio combination model.Taking the Baishuihe landslide of the Three Gorges as the research object,selecting precipitation,reservoir water level and displacement as the influence factors of the periodic term displacement,the model is trained and verified.The results show that:in the Baishuihe landslide periodic term displacement prediction,the APSO-SVR-GRU compared with a single model has higher prediction accuracy and stability.
关 键 词:滑坡位移 最小二乘法 支持向量机回归 门控神经网络 自适应粒子群算法
分 类 号:P642.22[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.141.195