基于高斯隐马尔可夫模型的人机共享控制区域化决策算法  被引量:3

Regionalized Decision Algorithm for Human-Machine Shared Control Based on Gaussian Hidden Markov Model

在线阅读下载全文

作  者:刘芳[1] 朱天贺 苏卫星 刘阳 LIU Fang;ZHU Tian-he;SU Wei-xing;LIU Yang(Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems,Tiangong University,Tianjin 300387,China;BBT-E-6 Complete Vehicle,BMW Brilliance Automotive Ltd.,Shenyang,Liaoning 110098,China)

机构地区:[1]天津工业大学天津市自主智能技术与系统重点实验室,天津300387 [2]华晨宝马汽车有限公司整车开发部,辽宁沈阳110098

出  处:《电子学报》2022年第11期2659-2667,共9页Acta Electronica Sinica

基  金:国家重点研发计划(No.2021YFB2501800);天津市研究生科研创新项目(No.2021YJSO2S17);国家自然科学基金(No.61802280,No.61806143,No.61772365,No.41772123);天津市技术创新引导专项(基金)(No.21YDTPJC00130)。

摘  要:针对伺服级共享控制决策中权衡安全性、干预度与驾驶体验的问题,提出基于高斯隐马尔可夫模型(Gaussian Hidden Markov Model,GHMM)的人机共享控制区域化决策算法.此算法利用高斯分布函数表征驾驶人的实时相对驾驶能力;利用区域化的高斯矢量环境风险场量化模型表征不同环境区域的环境风险值以及其模糊风险等级;最后综合驾驶人绝对能力、驾驶状态以及环境风险实现人机共享控制中控制权的高可靠、合理分配.实验表明,本文提出的人机共享区域化决策模型能够在考虑驾驶人相对能力及环境风险源所在方位的基础上给予较为合理的控制权柔性分配方案,有效降低风险至智能驾驶模型可控范围内.To address the problem of trade-off between safety,intervention and driving experience in servo-level shared control decision-making,a regionalized human-machine shared control decision algorithm based on Gaussian hidden Markov model(GHMM)is proposed.In this algorithm,Gaussian distribution function was applied to characterize the realtime relative driving ability of the driver and regionalized Gaussian vector risk field quantification model was applied to characterize the environmental risk and fuzzy risk levels in different regions.Finally the human-machine shared control decision integrated driver’s absolute ability,driving state and environmental risk to achieve a highly reliable and reasonable allocation of control right.The experiments show that regionalized human-machine shared control decision algorithm proposed in this paper can give a more reasonable flexible allocation scheme of control right based on the relative ability of drivers and the orientation of risk sources,and effectively reduce the risk within the controllable range of the intelligent driving model.

关 键 词:人机共驾 柔性驾驶控制权分配 行车风险场 驾驶人能力评价 隐马尔可夫模型 矢量风险场 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U491.25[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象