带自由边界的可压缩欧拉与欧拉-泊松方程组径向对称解的爆破  

Blowup of Radially Symmetric Solutions to the Compressible Euler and Euler-Poisson Equations with Free Boundaries

在线阅读下载全文

作  者:董建伟[1] 张巧[1] DONG Jianwei;ZHANG Qiao(School of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)

机构地区:[1]郑州航空工业管理学院,郑州450015

出  处:《数学年刊(A辑)》2022年第3期237-250,共14页Chinese Annals of Mathematics

基  金:河南省高等学校青年骨干教师培养计划项目(No.2019GGJS176);河南省高等学校重点科研项目(No.22A110024,No.22A110026)的资助。

摘  要:本文在R^(N)(N=2,3)中研究描述流向外部真空的可压缩流体的欧拉与欧拉-泊松方程组径向对称解的爆破.在分离流体与真空的连续自由边界条件下考虑其自由边值问题.对于径向对称的欧拉方程组,证明若初始流平均向外流动,则其光滑解将在有限时刻爆破.对于带有斥力与弛豫项的单极与双极径向对称欧拉-泊松方程组,证明若某个与初始动量有关的加权泛函适当大,则其光滑解将在有限时刻爆破。In this paper,the authors study the blowup of radially symmetric solutions to the compressible Euler and Euler-Poisson equations in R^(N)(N=2,3),which describe compressible fluids moving into outer vacuum.They consider the free boundary value problems under the continuous density condition across the free boundaries separating the fluid from vacuum.For the radially symmetric Euler equations,they show that the smooth solutions will blow up in a finite time if the initial flow moves outward on average.For the unipolar and bipolar radially symmetric Euler-Poisson equations with repulsive force and relaxation term,they prove that the smooth solutions will break down in a finite time if a weighted functional associated with the initial momentum is suitably large.

关 键 词:可压缩欧拉方程组 可压缩欧拉-泊松方程组 径向对称 光滑解 爆破 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象