检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁天乐 袁巨龙[1] 朱勇建[2] 郑翰辰 YUAN Tian-le;YUAN Ju-long;ZHU Yong-jian;ZHENG Han-chen(College of Mechanical Engineering,Zhejiang University of Technology,Hangzhou 310023,China;College of Mechanical Engineering,Zhejiang University of Science and Technology,Hangzhou 310023,China)
机构地区:[1]浙江工业大学机械工程学院,浙江杭州310023 [2]浙江科技学院机械工程学院,浙江杭州310023
出 处:《浙江大学学报(工学版)》2022年第12期2349-2357,共9页Journal of Zhejiang University:Engineering Science
基 金:国家重点研发计划资助项目(2018YFB2000402);国家自然科学基金资助项目(U1809221);浙江省基础公益计划资助项目(LGG21E050006)。
摘 要:为了提高推力球轴承表面缺陷检测的精确率和召回率,增强模型抗干扰能力,提出自动提取检测区域预处理和改进Transformer中的多头自注意力机制模块.在特征网络引入所提模块,忽略无关噪声信息而关注重点信息,提升中小表面缺陷的提取能力.使用实例归一化代替批量归一化,提高模型训练时的收敛速度和检测精度.结果表明,在推力球轴承表面缺陷检测数据集中,改进YOLOv5模型的准确率达到87.0%,召回率达到83.0%,平均精度达到86.1%,平均每张图片检测时间为14.96 ms.相比于YOLOv5s模型,改进模型的准确率提升1.5%,召回率提升7.3%,平均精度提升7.9%.与原模型相比,改进YOLOv5模型有更好的缺陷定位能力和较高的准确度,能够减小检测过程中的异物对检测结果造成的干扰,检测速度满足工业大批量检测的要求.An automatic extraction detection area preprocessing and a multi-head self-attention mechanism module in the improved Transformer were proposed, in order to improve the accuracy and recall rate of the surface defect detection of thrust ball bearings, and enhance the anti-interference ability of the model. The proposed module was introduced into the feature network ignoring irrelevant noise information and focusing on the key information, and the extraction ability of small and medium-sized surface defects was improved. Instance normalization was used instead of Batch normalization to improve the convergence speed and detection accuracy during model training.Results show that in the thrust ball bearing surface defect detection dataset, the accuracy rate of the improved YOLOv5 model reaches 87.0%, the recall rate reaches 83.0%, the average precision reaches 86.1%, and the average detection time per image was 14.96 ms. Compared with the YOLOv5s model, the accuracy of the improved model is increased by 1.5%, the recall rate is increased by 7.3%, and the average precision is increased by 7.9%. Compared with the original model, the improved YOLOv5 model has better defect positioning ability and higher accuracy, and can reduce interference of foreign objects in the detection process on detection results. A detection speed of the improved YOLOv5 model can meet the requirements of industrial mass detection.
关 键 词:深度学习 推力球轴承 YOLOv5 TRANSFORMER 注意力机制 表面缺陷检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.106.159