检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊[1] 曹俊兴[1] 丁蔚楠[2] 周鹏[1] 程明[1] LIU Jun;CAO JunXing;DING WeiNan;ZHOU Peng;CHENG Ming(Key Laboratory of Earth Exploration and Information Technology of Ministry of Education,Chengdu University of Technology,Chengdu 610059,China;Exploration and Development Research Institute of Sinopec Southwest Oil and Gas Branch Company,Sinopec,Chengdu 610041,China)
机构地区:[1]成都理工大学地球勘探与信息技术教育部重点实验室,成都610059 [2]中国石化西南油气分公司勘探开发研究院,成都610041
出 处:《地球物理学进展》2022年第5期1993-2000,共8页Progress in Geophysics
基 金:国家自然科学基金项目(42030812,41974160,41430323);中国石化科技部项目(P20055-6)联合资助。
摘 要:孔隙度作为重要的储层物性参数之一,在储层评价中发挥着重要作用,因此,寻找一种低成本、高效的方法获取高精度的孔隙度成为了储层评价的重要课题.由于测井参数和孔隙度之间复杂的非线性映射关系和时序性特点,本文提出了一种基于双向长短期记忆(BiLSTM)神经网络的储层孔隙度预测方法,通过建立BiLSTM孔隙度预测模型,并在模型中使用Nadam自适应优化算法提高模型训练效率和准确率,引入Dropout正则化技术防止训练过程中发生过拟合,采用ReLU激励函数提高网络的鲁棒性和稳定性,最后利用实际测井数据验证其性能.研究结果表明,相较于长短期记忆循环神经网络(LSTM)、常规循环神经网络(RNN)和全连接深度神经网络(DNN),BiLSTM模型具有更高的预测精度,在储层参数预测方向具有广阔的应用前景.As one of the important reservoir physical parameters, porosity plays an important role in reservoir evaluation. Therefore, finding a low-cost and efficient method to obtain high-precision porosity has become an important issue in reservoir evaluation. Due to the complex nonlinear mapping relationship and temporal characteristics between logging parameters and porosity, this paper proposes a reservoir porosity prediction method based on Bidirectional Long Short-Term Memory(BiLSTM) neural network. By establishing a BiLSTM porosity prediction model, and using the Nadam adaptive optimization algorithm in the model to improve the model training efficiency and accuracy, the Dropout regularization technology is introduced to prevent overfitting during the training process, and the ReLU excitation function is used to improve the robustness and stability of the network, and finally use actual logging data to verify its performance. The research results show that, compared with Long and Short-Term Memory Recurrent Neural Network(LSTM), conventional Recurrent Neural Network(RNN), and fully connected Deep Neural Network(DNN), the BiLSTM model has higher prediction accuracy, and it has broad application prospects in the direction of reservoir parameter prediction.
关 键 词:储层参数预测 深度学习 孔隙度 循环神经网络 双向长短期记忆神经网络 时序数据
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38