基于改进YOLOv5的复杂跨域场景下的猪个体识别与计数  被引量:13

Detecting and counting pig number using improved YOLOv5 in complex scenes

在线阅读下载全文

作  者:宁远霖 杨颖[1] 李振波[1,2,3] 吴潇 张倩 Ning Yuanlin;Yang Ying;Li Zhenbo;Wu Xiao;Zhang Qian(College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China;Key Laboratory of Agricultural Information Acquisition Technology,Ministry of Agriculture and Rural Affairs,Beijing 100083,China;National InnovationCenter for Digital Fishery,Ministry of Agriculture and Rural Affairs,Beijing 100083,China)

机构地区:[1]中国农业大学信息与电气工程学院,北京100083 [2]农业农村部农业信息获取技术重点实验室,北京100083 [3]农业农村部国家数字渔业中心,北京100083

出  处:《农业工程学报》2022年第17期168-175,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:科技创新2030-“新一代人工智能”重大项目课题-典型畜禽疫病诊断与主动防控智慧云平台(2021ZD0113805)。

摘  要:为解决复杂跨域场景下猪个体的目标检测与计数准确率低下的问题,该研究提出了面向复杂跨域场景的基于改进YOLOv5(You Only Look Once version 5)的猪个体检测与计数模型。在骨干网络中分别集成了CBAM(Convolutional Block Attention Module)即融合通道和空间注意力的模块和Transformer自注意力模块,并将CIoU(Complete Intersection over Union)Loss替换为EIoU(Efficient Intersection over Union)Loss,以及引入了SAM(Sharpness-Aware Minimization)优化器并引入了多尺度训练、伪标签半监督学习和测试集增强的训练策略。试验结果表明,这些改进使模型能够更好地关注图像中的重要区域,突破传统卷积只能提取卷积核内相邻信息的能力,增强了模型的特征提取能力,并提升了模型的定位准确性以及模型对不同目标大小和不同猪舍环境的适应性,因此提升了模型在跨域场景下的表现。经过改进后的模型的m AP@0.5值从87.67%提升到98.76%,m AP@0.5:0.95值从58.35%提升到68.70%,均方误差从13.26降低到1.44。该研究的改进方法可以大幅度改善现有模型在复杂跨域场景下的目标检测效果,提高了目标检测和计数的准确率,从而为大规模生猪养殖业生产效率的提高和生产成本的降低提供技术支持。The number of pigs in the shed often varies continuously in large-scale breeding scenes,due to the elimination,sale,and death.It is necessary to count the number of pigs during breeding.At the same time,the health status of the pigs is closely related to their behavior.The abnormal behavior can be predicted in time from the normal behavior of pigs for better economic benefits.Object detection can be expected to detect and count at the same time.The detection can be the basis of behavioral analysis.However,the current detection and counting performance can be confined to the blur cross-domain at the different shooting angles and distances in the complex environment of various pig houses.In this study,a novel model was proposed for pig individual detection and counting using an improved YOLOv5(You Only Look Once Version 5)in the complex cross-domain scenes.The study integrated CBAM(Convolutional Block Attention Module),a module that combined both channel and spatial attention modules,in the backbone network,and integrated the Transformer,a self-attention module,in the backbone network,and replaced CIoU(Complete IoU)Loss by EIoU(Efficient IoU)Loss,and introduced the SAM(Sharpness-Aware Minimization)optimizer and training strategies for multi-scale training,pseudo-label semi-supervised learning,and test set augment.The experimental results showed that these improvements enabled the model to better focus on the important areas in the image,broke the barrier that traditional convolution can only extract adjacent information within the convolution kernel,enhanced the feature extraction ability,and improved the localization accuracy of the model and the adaptability of the model to different object sizes and different pig house environments,thus improving the performance of the model in cross-domain scenes.In order to verify the effectiveness of the above improved methods,this paper used datasets from real scenes.There was cross-domain between these datasets,not only in the background environment,but also in the object s

关 键 词:模型 计算机视觉 目标检测 计数 注意力机制 半监督学习 

分 类 号:S126[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象