士兵和装甲车目标多尺度检测方法  被引量:4

Multi-Scale Detection Method for Soldier and Armored Vehicle Objects

在线阅读下载全文

作  者:王建中[1] 王加乐 于子博 王洪枫 WANG Jianzhong;WANG Jiale;YU Zibo;WANG Hongfeng(School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China)

机构地区:[1]北京理工大学机电学院,北京100081

出  处:《北京理工大学学报》2023年第2期203-212,共10页Transactions of Beijing Institute of Technology

基  金:国防基础科研计划资助项目(JCKY2021602B029)。

摘  要:针对士兵和装甲车目标的尺度差异大以及目标距离远近造成的目标多尺度问题,以YOLOv4深度学习算法为基础,提出了一种多尺度目标检测方法.通过针对性的数据增强方法丰富小目标样本的多样性,对输入图像进行分割预处理以提高网络输入小目标的分辨率,并基于特征金字塔网络实现大、中、小目标的分离检测,最后匹配检测结果并进行NMS处理去除冗余检测框,从而实现多尺度目标检测.实验结果表明,本文方法在保持大目标检测效果的情况下,中、小目标的平均检测精度分别提升了1.20%和5.54%,有效提高了中、小目标的检测效果.A multi-scale object detection method was proposed based on YOLOv4 deep learning algorithm to solve the multi-scale problem caused by the huge-scale difference between soldiers and armored vehicles, as well as object distance. The diversity of small object samples was enriched through targeted data augmentation methods input images were segmented to improve the resolution of input small objects of network, the detection results of large, medium and small objects were separated based on the feature pyramid network, and finally the detection results were matched and NMS processing was carried out to remove the redundant detection boxes, so as to achieve multi-scale object detection. The experimental results show that the average mean precision of small and medium objects is improved by 1.20% and 5.54% respectively, while the detection effect of large objects is maintained, which effectively improves the detection effect of small and medium objects.

关 键 词:多尺度目标检测 小目标检测 数据增强 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象