检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:凌立文[1,2] 徐镁淇 张学竞 LING Liwen;XU Meiqi;ZHANG Xuejing(College of Mathmatics and Informatics,South China Agricultural University,Guangzhou 510642,China;Institute of Rural Vitalization,South China Agricultural University,Guangzhou 510642,China)
机构地区:[1]华南农业大学数学与信息学院,广东广州510642 [2]华南农业大学乡村振兴研究院,广东广州510642
出 处:《广东农业科学》2022年第12期167-175,共9页Guangdong Agricultural Sciences
基 金:国家自然科学基金(71971089,72001083);广东省自然科学基金(2022A1515011612)。
摘 要:【目的】我国是猪肉生产及消费的大国,近年来,猪肉价格波动呈现频率加快、幅度增大的趋势。猪肉价格波动不仅增加农户收益的风险性,也在一定程度上影响广大民众的生活。正确识别猪肉价格波动的影响因素并对猪肉价格波动进行科学预测,有助于确保市场健康平稳运行。【方法】运用多维关联规则定量分析生猪养殖加工产业链、替代品市场、宏观经济环境变化、突发性事件和国际市场环境等5方面共16种因素与猪肉价格波动的关联和影响程度,将挖掘得到的高相关因素作为模型输入变量,运用支持向量回归机构造提前多步的猪肉价格波动预测模型。【结果】与猪肉价格波动关联程度最高的前3位因素是生猪疫病、生猪价格和仔猪价格,置信度分别为1.00、0.93和0.82;对猪肉价格影响程度最大的前3位因素是生猪疫病、猪肉产量和出栏猪肉量,提升度分别为1.84、1.67和1.67。相较于基准预测模型,将12个高相关影响因素作为模型输入,均方根误差减少29.11%,平均绝对百分比误差减少16.00%。【结论】使用多维关联规则进行变量筛选,不仅能减少模型的变量个数,还能有效提高模型的预测精度。鉴于生猪疫病对猪肉价格波动的关键影响作用,政府相关管理部门应提高对动物疫病的风险防范意识。【Objective】China is the main country in pork production and consumption. In recent years, pork price fluctuations have shown the trend of accelerating frequency and increasing amplitude. The fluctuation of pork price not only increases the risk of farmers’ income, but also affects the living of the general public. Correctly identifying the influencing factors of pork price fluctuations and making accurate predictions help to guarantee the well-functioning of the market.【Method】The multi-dimensional association rules were used to quantitatively analyze the correlation and influencing degree of 16 influencing factors in five main aspects including the industrial chain of pig breeding and processing, market of substitutes, changes in macroeconomic environment, emergencies and international market environment with pork price fluctuations. High correlation factors selected by mining were used as model input variables, and the support vector regression machine was used to construct a multi-step prediction model for pork price fluctuations.【Result】The top three factors most related to pork price fluctuations are pig epidemics, pig prices and piglet prices, with confidence levels of 1.00, 0.93 and 0.82respectively. The top three factors have the greatest impact on pork prices are pig epidemics, pork production and pork supplied to the market, with the improvement degrees of 1.84, 1.67 and 1.67, respectively. Compared with the baseline prediction model,with 12 highly correlated influencing factors as model inputs, the Root Mean Square Error(RMSE) is reduced by 29.11%, and the Mean Absolute Percentage Error(MAPE) is reduced by 16.00%.【Conclusion】The use of multi-dimensional association rules for variable selection not only reduces the number of variables, but also effectively improves the prediction accuracy.Given the vital influence that pig epidemic imposes on price volatility, authorities should raise the awareness of risk prevention of animal diseases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.110.116