检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟晴 吴艺婷 MENG Qing;WU Yiting(College of Sciences,China Jiliang University,Hangzhou 310018,China)
出 处:《中国计量大学学报》2022年第4期603-608,共6页Journal of China University of Metrology
基 金:国家自然科学基金青年项目(No.11901550);浙江省自然科学基金项目(No.LY21A010016)。
摘 要:目的:建立一个偶数阶导数非负的Hermite-Hadamard型不等式,证明一个含变限积分的函数的Schur凸性。方法:构造一个涉及高阶导数的含参数积分恒等式并利用其建立Hermite-Hadamard型不等式。作为应用,将建立的不等式用于证明一个含变限积分的函数的Schur凸性。结果:在偶数阶导数非负的条件下,得到Hermite-Hadamard不等式右侧与中间项之差的上界估计的不等式,并利用其证明一个Schur-凸函数。结论:得到一个新的Hermite-Hadamard型不等式,该不等式可用于证明函数的Schur凸性,并生成一些新的积分不等式。Aims:The purpose of this article is to provide a Hermite-Hadamard-type inequality for functions whose even order derivatives are non-negative and to verify the Schur convexity of a function containing variables limit of integral.Methods:Establishing an integral identity involving higher derivatives and utilizing it to obtain a Hermite-Hadamard-type inequality,the inequality was further used to deal with the Schur convexity of a function containing variables limit of integral.Results:Under the assumption that the even order derivatives of a function were non-negative,the upper bound estimation of differences between the right and middle terms of Hermite-Hadamard’s inequality was obtained.As applications,a new Schur-convex function was proved.Conclusions:A new inequality of Hermite-Hadamard-type is obtained,which can be used to prove the Schur convexity of a function and generate some new integral inequalities.
关 键 词:Hermite-Hadamard型不等式 凸函数 Schur-凸函数 高阶导数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222