检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李现国[1,2] 曹明腾 李滨 刘意 苗长云 LI Xian-Guo;CAO Ming-Teng;LI Bin;LIU Yi;MIAO Chang-Yun(School of Electronics and Information Engineering,Tiangong University,Tianjin 300387,China;Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Tianjin 300387,China)
机构地区:[1]天津工业大学电子与信息工程学院,天津300387 [2]天津市光电检测技术与系统重点实验室,天津300387
出 处:《红外与毫米波学报》2022年第6期1092-1101,共10页Journal of Infrared and Millimeter Waves
基 金:国防科技创新特区项目,天津市重点研发计划科技支撑重点项目(18YFZCGX00930)。
摘 要:针对资源受限的红外成像系统准确、实时检测目标的需求,提出了一种轻量型的红外图像目标检测算法GPNet。采用GhostNet优化特征提取网络,使用改进的PANet进行特征融合,利用深度可分离卷积替换特定位置的普通3×3卷积,可以更好地提取多尺度特征并减少参数量。公共数据集上的实验表明,本文算法与YOLOv4、YOLOv5-m相比,参数量分别降低了81%和42%;与YOLOX-m相比,平均精度均值提高了2.5%,参数量降低了51%;参数量为12.3 M,检测时间为14 ms,实现了检测准确性和参数量的平衡。A lightweight infrared image target detection algorithm GPNet is proposed to address the need for accurate and real-time target detection in resource-constrained infrared imaging systems.The feature extraction network is optimized using GhostNet,feature fusion is performed using an improved PANet,and a depth-separable convolution is used to replace the ordinary 3×3 convolution at specific locations to better extract multi-scale features and reduce the number of parameters.Experiments on public datasets show that the algorithm in this paper reduces the number of parameters by81%and 42%compared with YOLOv4 and YOLOv5-m,respectively;the average mean accuracy is improved by 2.5%and the number of parameters is reduced by 51%compared with YOLOX-m;the number of parameters is 12.3 M and the detection time is 14 ms,which achieves a balance between detection accuracy and number of parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222