一种基于地轴投影的二维重力匹配方法  被引量:1

A two-dimensional gravity map matching method based on the earth’s axis projection

在线阅读下载全文

作  者:毛宁 李安[1] 许江宁[1] 覃方君[1] 李京书[2] MAO Ning;LI An;XU Jiangning;QIN Fangjun;LI Jingshu(College of Electrical Engineering,Naval University of Engineering,Wuhan,430033,China;Department of Operational Research and Programing,Naval University of Engineering,Wuhan,430033,China)

机构地区:[1]海军工程大学电气工程学院,武汉430033 [2]海军工程大学作战运筹与规划系,武汉430033

出  处:《中国惯性技术学报》2022年第6期783-790,共8页Journal of Chinese Inertial Technology

基  金:国家自然科学基金(42274013,41804076)。

摘  要:惯性/重力匹配组合导航是实现水下航行器长航时、高精度、高隐蔽性航行的有效途径。为了提高初始定位误差较大情况下匹配算法的有效匹配率,通过分析目前重力矢量测量的难点,提出了一种基于地轴投影的二维重力匹配导航方法。并建立二维重力异常数据库,利用惯导提供的纬度信息将重力仪测得的重力异常进行分解,设计了二维重力匹配的V-ICCP算法。3条初始水平定位误差为6海里的仿真航迹试验结果表明,所提方法适用于初始定位误差较大情况下的匹配定位,V-ICCP算法的有效匹配率较ICCP平均提高了10%以上,为重力匹配问题的解决提供了一种新的思路。INS/Gravity matching navigation is an effective way for submarines and other underwater vehicles to navigate with long endurance, high precision and stealth. To improve the effective matching rate of matching algorithm for large initial positioning error, a two-dimensional matching navigation method based on the earth’s axis projection is proposed by analyzing the difficulties of the gravity vector measurement, and a two-dimensional gravity anomaly database is established. The V-ICCP algorithm are designed by decomposing the gravity anomaly information measured by the gravimeter using the latitude information provided by INS. The experimental results of three simulated paths with an initial horizontal positioning error of 6 nautical miles show that the proposed method is applicable to large initial positioning error, and the effective matching rate of V-ICCP algorithm is more than 10% higher than that of ICCP, which provides a new idea for the solution of the gravity matching problem.

关 键 词:重力匹配 重力分解 ICCP算法 TERCOM算法 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象