基于机器学习的图号申请系统设计与实现  

Design and implementation of drawing number apply system based on machine learning

在线阅读下载全文

作  者:罗瑞旭 张辉[1] 张胜文[1] 李坤[1] 方喜峰[1] LUO Ruixu;ZHANG Hui;ZHANG Shengwen;LI Kun;FANG Xifeng(School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,CHN)

机构地区:[1]江苏科技大学机械工程学院,江苏镇江212100

出  处:《制造技术与机床》2023年第1期153-159,共7页Manufacturing Technology & Machine Tool

基  金:镇江市重点研发计划项目(GY2020007)。

摘  要:针对企业中图号申请效率低下的现状,开发了基于机器学习的图号申请系统。首先,对企业PDM库中的历史图号申请记录进行去流水号和去重处理得到数据集。其次,采用K-means++算法将数据集和需要申请图号的新零部件共同聚类划分为若干簇,遍历每簇中的新零部件并利用KNN算法得到其属性图号。针对“同名异号”件采用基于多视图卷积神经网络的三维模型检索技术得到其属性图号。最后,对属性图号分配最新流水号得到完整图号。以企业某批次冷藏车厢体为例,系统图号申请正确率达到95%以上,效率提高5~6倍。For the current situation of low efficiency of drawing number apply in enterprises, a drawing number apply system based on machine learning was developed. First, the dataset is obtained by remove serial number and remove duplicates processing of the existing historical drawing number apply records in the enterprise PDM database. Secondly, the K-means++ algorithm is used to divide the dataset and the parts that need to apply for drawing numbers into several clusters, traverse the new parts in each cluster and use the KNN algorithm to get their attribute drawing numbers. For the “same name and different number” parts, the MVCNN-based 3D model retrieval technology is used to obtain the attribute drawing number. Finally, assign the latest serial number to the attribute drawing number to obtain the complete drawing number. Taking a batch of refrigerated trucks in an enterprise as an example, the correct rate of system drawing number apply is over 95%, and the efficiency is increased by 5~6 times.

关 键 词:图号申请 K均值算法 K近邻算法 卷积神经网络 

分 类 号:TH121[机械工程—机械设计及理论] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象