基于DFCNN的滚动轴承定量诊断方法研究  被引量:1

A Rolling Bearing Quantitative Diagnosis Method based on DFCNN

在线阅读下载全文

作  者:张辉 曹云鹏[1] 董昕阳 冯伟兴[2] ZHANG Hui;CAO Yun-peng;DONG Xin-yang;FENG Wei-xing(College of Power and Energy Engineering,Harbin Engineering University,Harbin,China,Post Code:150001;College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin,China,Post Code:150001)

机构地区:[1]哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001 [2]哈尔滨工程大学智能科学与工程学院,黑龙江哈尔滨150001

出  处:《热能动力工程》2022年第12期181-188,共8页Journal of Engineering for Thermal Energy and Power

基  金:国家科技重大专项(2017-Ⅰ-0007-0008,J2019-Ⅰ-0003-0004)。

摘  要:以滚动轴承作为研究对象,设计了深度可分离模块、残差骨干网络、金字塔池化结构和路径聚合结构等特征融合单元,建立了深度特征融合的卷积神经网络(Deep Feature Convolutional Neural Network,DFCNN),分析了随机梯度下降法对网络参数优化的有效性及数据集传递次数与模型精度的关系,开展了不同样本容量和不同噪声环境下的故障试验。结果表明:提出的DFCNN模型可以有效识别滚动轴承损伤部位以及损伤程度,诊断准确率大于99.5%;该模型对样本容量要求低、抗噪能力出色,当信噪比大于-4时诊断准确率大于98.86%。Taking rolling bearing as the research object,this paper designed feature fusion units such as depth separable module,backbone network of residual network,pyramid pooling structure,path aggregation structure,and established a deep feature convolutional neural network(DFCNN).The effectiveness of the stochastic gradient descent method for network parameter optimization was analyzed,the relationship between number of transmission of dataset and model accuracy was discussed,and the fault tests under different sample sizes and different noise environments were carried out.The results show that the proposed DFCNN model can effectively identify the damage location and degree of rolling bearing,and the diagnosis accuracy is more than 99.5%;it has low requirements for sample size and excellent anti-noise ability.When the signal-to-noise ratio is greater than-4,the diagnostic accuracy is greater than 98.86%.

关 键 词:滚动轴承 故障诊断 卷积神经网络 深度特征 信息融合 抗噪 

分 类 号:TK221[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象