基于CEEMDAN自适应小波降噪与卷积神经网络的齿轮箱故障诊断研究  被引量:11

Research on Gearbox Fault Diagnosis Based on CEEMDAN Adaptive Wavelet Noise Reduction and Convolution Neural Network

在线阅读下载全文

作  者:蔡超志 白金鑫 池耀磊 张仲杭 CAI Chaozhi;BAI Jinxin;CHI Yaolei;ZHANG Zhonghang(School of Mechanical and Equipment Engineering,Hebei University of Engineering,Handan Hebei 056038,China)

机构地区:[1]河北工程大学机械与装备工程学院,河北邯郸056038

出  处:《机床与液压》2022年第24期171-180,共10页Machine Tool & Hydraulics

基  金:河北省自然科学基金项目(E2020402060)。

摘  要:噪声情况下精确地对齿轮箱进行故障诊断是齿轮箱故障诊断的难题。为了解决该难题,采取自适应小波对自适应噪声完全集合经验模态分解(CEEMDAN)分量进行分解降噪与重组,并提出卷积神经网络(CNN)结合Inception模块的一维卷积神经网络(BICNN)提取重构信号的基本数字特征,同时使用长短期记忆提取BICNN所提取到的特征之间的相关性特征,对齿轮箱进行故障诊断研究。诊断结果表明:所提出的方法具有较高的抗噪声能力,并且齿轮箱在受到-4 dB噪声干扰的情况下,所提出的方法仍然可以获得99.63%的训练精度。Accurate fault diagnose of gearbox under noise condition is a difficult problem in gearbox fault diagnosis.In order to solve this problem,the noise reduction method of decomposing and reorganizing complete ensemble empirical mode decomposition with adaptive noise analysis(CEEMDAN)by adaptive wavelet was adopted,and the convolution neural network based on inception(BICNN)was put forward to extract the basic digital characteristics of the reconstructed signal and long short-term memory(LSTM)was adopted to extract the correlation features among the features extracted by BICNN.The method was used to study the fault diagnosis of the gearbox.The diagnosis results show that the proposed method has high anti-noise ability,and it can still obtain 99.63%training accuracy when the gearbox is disturbed by-4 dB noise.

关 键 词:自适应小波分解与重构 自适应噪声完全集合经验模态分解 卷积神经网络 长短期记忆 抗噪声能力 齿轮箱故障诊断 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象