智能网联信息下车辆跟驰模型构建及行为影响分析  被引量:6

Development and Performance of a Cooperative Adaptive Cruise Control Car-following Model

在线阅读下载全文

作  者:王文璇[1] 阎莹[1] 吴兵[2] WANG Wenxuan;YAN Ying;WU Bing(College of Transportation Engineering,Chang’an University,Xi’an 710064,China;Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China)

机构地区:[1]长安大学运输工程学院,陕西西安710064 [2]同济大学道路与交通工程教育部重点实验室,上海201804

出  处:《同济大学学报(自然科学版)》2022年第12期1734-1742,共9页Journal of Tongji University:Natural Science

基  金:国家自然科学基金(52172331);陕西省重点研发计划(2021KWZ-09)。

摘  要:基于传统跟驰模型提出考虑多前车速度和加速度信息影响的跟驰模型,根据车辆轨迹信息对跟驰模型参数标定,探究多前车信息对本车运行在交通安全和效率方面的影响以及协同自适应巡航(cooperative adaptive cruise control,CACC)车辆在不同渗透率下对交通安全和效率的影响。结果表明:除了紧邻前车外,多前车的运动信息会对后车的运动造成影响;考虑多前车的速度和加速度反馈会提高交通安全和效率;CACC车辆对交通安全和效率的影响与CACC渗透率和排列方式有很大关系。A microscopic traffic flow model was proposed based on a traditional car-following model with the consideration of the effects of multiple preceding cars’velocity and acceleration;then the parameters of carfollowing models were calibrated on the basis of the vehicle trajectory;Subsiquently,the impact of multiple preceding vehicles information on traffic safety and efficiency were also investigated;finally,the influence of cooperative adaptive cruise control(CACC)vehicles on traffic safety and efficiency with different penetration rates were also studied.Simulation results prove that except for the immediately preceding vehicle,multiple preceding vehicles’information in the control strategy of the CACC system would have an impact on the following vehicle;the consideration of the velocity and acceleration of multiple preceding vehicles can improve traffic safety and efficiency;the impact of CACC on traffic safety and efficiency was highly related to the penetration rate and arrangement of CACC vehicles.

关 键 词:跟驰模型 参数标定 智能网联 数值仿真 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象