检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈文韵 王学影 胡晓峰 郭斌 CHEN Wenyun;WANG Xueying;HU Xiaofeng;GUO Bin(College of Metrology and Measurement Engineering,China Jiliang University,Hangzhou 310018,China;Hangzhou Wolei Intelligent Technology Co.,Ltd.,Hangzhou 310018,China)
机构地区:[1]中国计量大学计量测试工程学院,浙江杭州310018 [2]杭州沃镭智能科技股份有限公司,浙江杭州310018
出 处:《中国测试》2023年第1期98-104,共7页China Measurement & Test
基 金:国家自然科学基金(52075511)。
摘 要:针对传统的图像处理方法对于机械零件检测存在的检测时间长、准确率低等难点,提出一种基于EfficientDet的汽车ECU分类检测方法,将经过预处理和数据增强的ECU外壳图片样本输入神经网络训练,利用一种改进的新型的加权双向特征提取网络BiFPN和一种复合尺度扩张方法进行特征提取并匹配特征图,提高检测的准确率,利用预训练模型进行迁移学习缩减训练时长,实现ECU外壳的自动检测。将检测结果与Faster R-CNN、Mask R-CNN、EfficientDet-D0模型检测结果相比较,实验结果表明,基于EfficientDet的机械零件检测算法的识别率高于对比的其他网络模型,mAP达92.4%,在实际应用中更能够精确地检测ECU零件,满足实验与生产线检测需求。In order to solve the problem of the traditional image processing method,it is difficult to detect machine parts with long detection time and low precision,and EfficientDet-based ECU classification method was proposed.The pre-processed and data enhanced ECU shell samples were fed into the neural network training.An improved weighted bidirectional feature extraction network BiFPN and a compound scale expansion method were used to extract features and match the feature map to improve the precision of detection.The pre-training model was used for transfer learning to reduce the training time,and the automatic detection of ECU shell was realized.The results were compared with the Faster R-CNN,Mask R-CNN and EfficientDet-D0 models.The EfficientDet-based algorithm achieved a better recognition rate than its peer networks,with mAP reaching 92.4%.In practical applications,it can more accurately detect ECU parts to meet the requirements of test and production line testing.
关 键 词:深度学习 EfficientDet 卷积神经网络 目标检测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33