铁路客运车站客流监测与预警系统  被引量:1

Passenger flow monitoring and early warning system for railway passenger station

在线阅读下载全文

作  者:李永 孟歌 廖凤华 张军锋 周星 LI Yong;MENG Ge;LIAO Fenghua;ZHANG Junfeng;ZHOU Xing(Institute of Computing Technologies,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;Department of Passenger Transport,China Railway Jinan Group Co.Ltd.,Jinan 250001,China)

机构地区:[1]中国铁道科学研究院集团有限公司电子计算技术研究所,北京100081 [2]中国铁路济南局集团有限公司客运部,济南250001

出  处:《铁路计算机应用》2023年第1期68-73,共6页Railway Computer Application

基  金:中国铁道科学研究院集团有限公司科研项目(2021YJ191);京沪高速铁路股份有限公司科技研究项目(京沪科研-2020-2)。

摘  要:由于缺乏准确的实时客流数据,铁路客运车站的客运组织一直主要依靠经验来调配设备、人员等所需资源。为此,开发了铁路客运车站客流监测与预警系统,通过有效利用铁路客票预售数据、车站历史客流数据、旅客进出站实时数据、列车正晚点数据等相关数据,建立基于K均值聚类的支持向量回归机客流预测模型,实现车站每日进站客流、分时段进站客流、候车室客流的监测、预测及超限预警,方便车站工作人员随时掌握客流动态,及时根据客流变化进行设备和人员动态调配,更加精准、高效、安全、有序地开展车站客运组织作业,有助于改善车站客运服务水平,提升旅客出行体验。Due to the lack of accurate real-time passenger flow data, passenger traffic organization of railway passenger station has been mainly relying on experience to allocate the equipment, personnel and other required resources. Therefore, the passenger flow monitoring and early warning system for railway passenger station is developed. Through effective use of railway passenger ticket reservation data, historical station passenger flow data,real-time passenger flow data in and out of the station, train delay data and other relevant data, the monitoring,forecasting and over-limit warning of daily passenger flow, time-phased passenger flow of the station and passenger flow in waiting rooms can be realized using a passenger flow prediction support vector regression model based on Kmean clustering, which can facilitate the station staff to grasp the dynamic changes in passenger flow at any time so as to timely deploy the equipment and personnel, thus carrying out the passenger traffic organization operations of the station more accurately, efficiently, safely and orderly, and helping improve the level of passenger service at railway passenger stations and enhancing passenger travel experience.

关 键 词:铁路客运 客流监测 预测与预警 K均值聚类 支持向量回归机 

分 类 号:U293.13[交通运输工程—交通运输规划与管理] TP399[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象