检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛彤 刘立东[1] 武忆涵 NIU Tong;LIU Li-Dong;WU Yi-Han(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出 处:《计算机系统应用》2023年第1期146-155,共10页Computer Systems & Applications
基 金:陕西省自然科学基金(2020JM-220)。
摘 要:针对传统图像拼接算法速度较慢,难以满足获取大分辨率全景图像的实时性要求,本文提出一种基于CUDA的快速鲁棒特征(speeded-up-robust features,SURF)图像配准算法,从GPU线程执行模型、编程模型和内存模型等方面,对传统SURF算法特征点的检测和描述进行CUDA并行优化;基于FLANN和RANSAC算法,采用双向匹配策略进行特征匹配,提高配准精度.结果表明,相对串行算法,本文并行算法对不同分辨率的图像均可实现10倍以上的加速比,而且配准精度较传统配准算法提高17%,精度最优可高达96%.基于CUDA加速的SURF算法可广泛应用于安防监控领域,实现全景图像的实时配准.Traditional image stitching algorithms are slow and fail to meet the requirements of obtaining large-resolution panoramic images in real time.To solve these problems,this study proposes an image registration algorithm based on CUDA’s speeded-up-robust features(SURF)and carries out CUDA parallel optimization on the detection and description of feature points of traditional SURF algorithms in terms of GPU thread execution model,programming model,and memory model.In addition,based on FLANN and RANSAC algorithms,the study adopts a bidirectional matching strategy to match features and improve registration accuracy.The experimental results show that compared with serial algorithms,the proposed parallel algorithm can achieve an acceleration ratio of more than 10 times for images with different resolutions,and the registration accuracy is 17%higher than that of traditional registration algorithms,with an optimal accuracy of as high as 96%.Therefore,the SURF algorithm based on CUDA acceleration can be widely used in the field of security monitoring to realize the real-time registration of panoramic images.
关 键 词:快速鲁棒特征 统一计算设备架构 并行加速 快速最近邻搜索算法 RANSAC 双向匹配 图像配准
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.125.13