基于神经网络的时变参数系统仿真优化方法  被引量:3

Approach to simulation optimization of time-varying parameters system based on neural network

在线阅读下载全文

作  者:吴诗辉[1] 周宇[2] 李正欣 刘晓东[1] 贺波[1] WU Shihui;ZHOU Yu;LI Zhengxin;LIU Xiaodong;HE Bo(Equipment Management and Unmanned Aerial Vehicle Engineering School,Air Force Engineering University,Xi’an 710051,China;School of Electronic Engineering,Xidian University,Xi’an 710071,China)

机构地区:[1]空军工程大学装备管理与无人机工程学院,陕西西安710051 [2]西安电子科技大学电子工程学院,陕西西安710071

出  处:《系统工程与电子技术》2023年第2期472-480,共9页Systems Engineering and Electronics

基  金:国家自然科学基金(61601501)资助课题。

摘  要:时变参数系统的仿真优化问题是一个新兴的研究课题,相比传统仿真优化,时变参数系统对实时性的要求高,而对解的精度要求不高。本文提出将该问题转换为一类神经网络预测问题,并从理论上证明了该方法的可行性。首先,线下构建神经网络模型描述输入参数到最优解的映射关系;然后,利用训练好的神经网络模型线上实时预测最优解。考虑到边界样本对最优解拟合曲面的影响,提出构建中心样本和边界样本,分别训练两个神经网络模型。仿真和实例表明,该方法能够随时变参数的变化实时给出满意解,从而为求解时变参数仿真优化问题提供一种新的解决思路。Simulation optimization(SO)of time-varying parameters(TVP)systems is an emerging research topic,which is different from traditional SO problems in that the real-time requirements are very high while the accuracy requirements are relatively lower.This paper proposes to transform the SO problem with TVP into a neural network(NN)prediction problem,and theoretically proves the feasibility of the method.Firstly,training samples are generated by offline SO,and an appropriate NN model is designed and trained to describe the relationship between input TVP and the corresponding optimal solutions.Then,the well trained NN model is used to realize online real-time prediction of the optimal solution.Considering the impact of boundary samples on the optimal solution fitting curve,we propose to train internal training samples and boundary training samples respectively so that two different NN models will be built to better reflect the fitting curve.The simulation and empirical study show that,our approach can provide online real-time satisfactory solutions as TVP changes,which presents an approach to SO problems with TVP.

关 键 词:时变参数 仿真优化 神经网络 在线优化 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象