检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙铭均
机构地区:[1]辽宁师范大学,116000
出 处:《数理化解题研究》2023年第3期56-58,共3页
摘 要:在线性代数中,经常需要把复杂的线性方程组转化为矩阵,应用矩阵分解思想来完成复杂的线性方程组计算,本文将探讨矩阵分解思想解题的意义.该文的研究主要分为三个部分.第一,对矩阵分解思想进行简要的说明,说明复杂的线性方程组和矩阵分解之间的关系.第二,研究矩阵的和式分解的方法,这一部分的研究说明了在具体的环境中,人们需要应用矩阵分解思想来简化复杂的线性方程.第三,研究矩阵的乘积分解的应用,应用案例说明人们在建立复杂的线性方程时,有时线性方程本身就有约束条件,而这些约束条件就是简化方程计算的途径.矩阵分解思想是一种能够简化复杂线性方程计算的重要思想,熟悉这种思想能对复杂线性方程计算有更深刻地理解.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7