检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈峥 毕晓君 CHEN Zheng;BI Xiaojun(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;School of Information Engineering,Minzu University of China,Beijing 100081,China)
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]中央民族大学信息工程学院,北京100081
出 处:《哈尔滨工程大学学报》2023年第2期292-299,共8页Journal of Harbin Engineering University
基 金:国家社会科学基金重大项目(20&ZD279)。
摘 要:目前单幅图像去雨滴网络的特征图存在较高的相似性和冗余性,导致模型的参数量庞大,极大限制了其在实际应用中的部署。本文提出一种基于轻量级神经网络的单幅图像去雨滴模型。采用一种幻像特征生成残差块,用于解决网络中特征图的相似性和冗余性问题。设计了一种复合折叠式重用机制,有效改善了由于参数减少带来的模型性能下降。提出一种轻量级门控循环单元,用于强化折叠式去雨滴架构中的深度特征交互,进一步提高了模型的性能。实验结果表明:本文提出的轻量级去雨滴模型在性能持平或略高于目前3种算法的前提下,分别实现了模型参数量的18、37及51倍的压缩,较好解决了在实际应用中的部署问题。At present,the feature maps in the single image raindrop removal network have high similarity and redundancy,resulting in a huge number of parameters of the existing models.It greatly limits the deployment in practical applications.To this end,this paper proposes a single image raindrop removal model based on lightweight neural network.The model employs a ghost feature generation residual block to solve the similarity and redundancy of feature maps in the network.A composite foldable reusing mechanism is designed to effectively improve the model’s performance degradation caused by parameter reduction.A lightweight gated recurrent unit is introduced to enhance the interaction of deep features in the folded raindrop removal architecture,which further improves performance of the model.The experimental results show that the proposed lightweight raindrop removal model respectively achieves 18-,37-,and 51-times the compression of parameters,whose performance is equal to or slightly higher than that of the current three state-of-the-art algorithms.It better solves the deployment problem in practical applications.
关 键 词:单幅图像去雨滴 轻量级网络 幻像特征生成 深度学习 循环神经网络 门控循环单元 特征融合 特征交互
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7