检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴皆旺 孙胜利[1,2] 徐文君 刘高睿 WU Jiewang;SUN Shengli;XU Wenjun;LIU Gaorui(Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,CHN;Key Laboratory of Intelligent Infrared Perception,Chinese Academy of Sciences,Shanghai 200083,CHN;School of Information Science and Technology,ShanghaiTech University,Shanghai 201210,CHN)
机构地区:[1]中国科学院上海技术物理研究所,上海200083 [2]中国科学院智能红外感知重点实验室,上海200083 [3]上海科技大学信息与技术学院,上海201210
出 处:《半导体光电》2022年第5期935-941,共7页Semiconductor Optoelectronics
基 金:中国科学院智能红外感知重点实验室基金项目(CXJJ-20S030);上海市浦江人才计划项目(20PJ1415400)。
摘 要:针对云层背景下红外小目标检测难、可用数据集少的问题,提出了一种基于混沌预测的检测方法。首先从云层背景的空间混沌特征出发,采用径向基函数神经网络设计了混沌序列的预测模型,并利用遗传算法优化网络参数,提高预测精度。然后利用预测模型对图像像素序列的预测值与实际值之间的预测误差,实现了小目标检测。最后通过实验验证了上述算法的有效性,对测试样本的检测率为86.7%,虚警率为0.86%。Aiming at the problems of difficult detection of infrared small targets in cloudy background with few available data sets, a detection method based on chaos prediction was proposed. Based on the spatial chaotic characteristics of cloudy background, the prediction model of chaotic sequence was designed by using radial basis function neural network, and the network parameters were optimized by genetic algorithm to improve the prediction accuracy. Then, the small target detection was realized by the prediction error between the predicted and actual values of the image pixel sequence by the prediction model. Experiments verify the effectiveness of the above algorithm. The detection rate of test samples is 86.7% and the false alarm rate is 0.86%.
分 类 号:TN911.73[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222