检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗亮 陈慧璇 吴张 谢小良 刘长石 LUO Liang;CHEN Hui-xuan;WU Zhang;XIE Xiao-liang;LIU Chang-shi(College of Management,Hunan University of Technology and Business,Changsha 410205,China;Logistics System Optimization and Operation Management Science and Technology Innovation Team of University in Hunan Province,Hunan University of Technology and Business,Changsha 410205,China;Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation,Hunan University of Technology and Business,Changsha 410205,China;Research Department,Hunan University of Technology and Business,Changsha 410205,China)
机构地区:[1]湖南工商大学工商管理学院,湖南长沙少410205 [2]湖南工商大学湖南省高校“物流系统优化与运作管理”科技创新团队,湖南长沙410205 [3]湖南工商大学统计学习与智能计算湖南省重点实验室,湖南长沙410205 [4]湖南工商大学科研处,湖南长沙410205
出 处:《系统工程》2022年第6期67-75,共9页Systems Engineering
基 金:国家自然科学基金资助项目(71991460,71972069);湖南省大数据技术与管理国际科技创新合作基地项目(2018WK4030);湖南省自科基金资助项目(2021JJ30195,2019JJ40147);湖南省教育厅项目(18A297,20A127,20C0533);湖南省社科基金资助项目(18YBA267);湖南省研究生科研创新项目(CX20201105);湖南省社科评审委项目(XSP20YBC251,GLX235)。
摘 要:研究生鲜农产品冷链配送的车辆路径规划,首先建立基于交通状况与天气状况双重作用的车速预测函数;再综合考虑车辆容量、速度、客户需求量、时间窗、生鲜农产品损耗与保质期等因素,以车辆使用的固定成本、时间成本、制冷成本、生鲜农产品损耗成本、车辆油耗与碳排放成本之和最小为目标构建冷链配送的带时间窗车辆路径规划模型,并根据模型特点设计一种改进蚁群算法求解;最后,通过多类型算例验证本文方法的有效性与可行性。实验结果表明:交通与天气状况共同影响配送车辆路径规划,生鲜农产品应尽量在天气状况良好的情况下进行配送;车辆路径规划应同时兼顾经济成本与环境成本,促进生鲜农产品物流配送与环境保护的和谐发展。The vehicle routing problem of cold chain distribution for fresh agricultural product is studied in this paper. First, the influences of the urban traffic characteristics and weather conditions on vehicle speed are analyzed, and the speed prediction function is established based on the dual effects of traffic conditions and weather conditions. Second, by considering the factors such as vehicle capacity, speed, customer demand, time window, loss of fresh production and its shelf life, the vehicle routing problem with time windows(VRPTW) model of cold chain distribution was formulated. The objective of the VRPTW model is to minimize the sum of fixed cost of vehicles, vehicle duty time cost, cooling cost, loss cost of fresh agricultural products, fuel consumption cost and carbon emission cost. An improved ant colony algorithm is designed to solve the VRPTW. Finally, the validity and feasibility of the proposed approaches are verified by multitype instances. The experimental results show that the vehicle routes planning of distribution is influenced by traffic conditions and weather conditions, and fresh agricultural products should be distributed under good weather condition as much as possible. Vehicle routes planning should take into account both economic cost and environmental cost to promote the harmonious development of fresh agricultural products distribution and environmental protection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.212.53