检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万凯 WAN Kai(Jiangxi Water Resources Institute,Nanchang,Jiangxi 330006)
出 处:《工程技术研究》2022年第22期5-7,共3页Engineering and Technological Research
摘 要:文章针对已知的PSO-LSSVM监测模型泛化能力低,使得模型预测精度下降的问题,提出了小波阈值降噪的PSO-LSSVM的混凝土坝变形组合模型。此方法是将小波降噪理论和PSO-LSSVM算法结合起来创建的预测精度较高的大坝位移预测组合模型。该模型先是将大坝位移数据进行一遍小波阈值降噪预处理,然后将降噪后的位移数据经过PSO-LSSVM算法进行训练,得到了小波阈值降噪的PSO-LSSVM的混凝土坝变形组合模型。通过某重力坝进行实例验证,证明该监控模型能够准确预测出大坝的位移偏移量,在大坝安全监控方面具有很高的应用价值。Aiming at the problem that the known PSOLSSVM monitoring model has low generalization ability,which reduces the prediction accuracy of the model, a concrete dam deformation combined model based on PSOLSSVM and wavelet threshold denoising is proposed. This method is a combination of wavelet denoising theory and PSO-LSSVM algorithm to create a dam displacement prediction model with high prediction accuracy. Firstly, the dam displacement data is preprocessed by wavelet threshold denoising, and then the denoised displacement data is trained by PSO-LSSVM algorithm to obtain a concrete dam deformation combined model based on PSO-LSSVM and wavelet threshold denoising. Through the example verification of a gravity dam, it is proved that the monitoring model can accurately predict the displacement offset of the dam, and has high application value in dam safety monitoring.
关 键 词:小波阈值 泛化能力 PSO-LSSVM 模型预测
分 类 号:TV698.11[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.201.103