检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严瑾 夏世娇 吴仁芳 Yan Jin;Xia Shijiao;Wu Renfang(Department of Mathematics and Statistics,Hunan Normal University,Changsha,Hunan,410081)
机构地区:[1]湖南师范大学数学与统计学院,湖南长沙410081
出 处:《考试研究》2023年第1期26-37,共12页Examinations Research
基 金:湖南省自然科学基金面上项目--图中单调性拓扑指数极值问题的研究(2018JJ2249);湖南师范大学博士启动基金项目--图中单调性拓扑指数极值问题的研究(0531120-4098)。
摘 要:以2017年至2022年高考全国卷18套理科数学试卷中涉及的“立体几何”试题为研究对象,基于综合难度模型,从背景因素、参数水平、运算水平、推理能力、知识含量、解题的思维方式、认知水平、条件含量及字符阅读量9个维度进行难度分析。研究发现,2017年至2022年全国Ⅰ卷、Ⅱ卷、Ⅲ卷“立体几何”试题难度差异不显著,存在较为稳定的层次性,并强调学习的过程性。建议“立体几何”试题命制进一步注重设置问题情境,注重难度均衡,增加试题灵活性,并提出培养学生“四基”“四能”“六大核心素养”等教学建议。Taking“Solid Geometry”unit of College Entrance Examination Science Mathematics Examination Paper National Volumes Ⅰ,Ⅱ and Ⅲ from 2017 to 2022 as the research object,and based on the comprehensive difficulty model,difficulty analysis was carried out in 9 dimensions of background factors,parameter level,operation level,reasoning ability,knowledge content,problem solving thinking mode,cognitive level,conditional content and character reading volume. The study found that there was no significant difference in the difficulty of the“Solid Geometry”test questions in the national volumes I,II and III from 2017 to 2022,and there was a relatively stable hierarchy,and the process of learning was emphasized. It is suggested that further attention should be paid to setting the problem situation,focusing on the balance of difficulty,increasing the flexibility of the test questions,and giving corresponding teaching suggestions as cultivating students’ basic knowledge,basic abilities and core competences.
分 类 号:G424.74[文化科学—课程与教学论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.105.175