基于点线特征融合的视觉惯性SLAM算法  被引量:7

Visual inertial SLAM algorithm based on point-line feature fusion

在线阅读下载全文

作  者:赵伟博 田军委[1] 王沁[1] 张震 赵鹏[1] Zhao Weibo;Tian Junwei;Wang Qin;Zhang Zhen;Zhao Peng(School of Mechatronic Engineering,Xi’an Technology University,Xi’an 710021,China)

机构地区:[1]西安工业大学机电工程学院,西安710021

出  处:《计算机应用研究》2023年第2期445-449,共5页Application Research of Computers

基  金:陕西省重点研发计划项目(2022GY-068);西安市未央区科技计划项目(202021)。

摘  要:针对目前视觉SLAM方法鲁棒性差、耗时高,使系统定位不够精确的问题,提出了一种基于点线特征融合的视觉惯性SLAM算法。首先通过短线剔除和近似线段合并策略改进LSD(line segment detection)提取质量,以提高线特征检测的速率和准确度;然后在后端优化中有效融合了点、线和IMU数据,建立最小化目标函数进行优化,得到更精确的相机位姿;最后在EuRoC数据集和现实走廊场景进行了实验验证。实验表明,所提算法可以有效提升线特征提取的质量和速度,同时有效提高了SLAM系统的定位精度,获得更为丰富的点线结构地图。Aiming at the problem that the current visual SLAM method has poor robustness and high time consumption,which makes the system localization not accurate enough,this paper proposed a visual-inertial SLAM algorithm based on point-line feature fusion.Firstly,it improved the LSD extraction quality through short-line culling and approximate line-segment merging strategies to improve the speed and accuracy of line feature detection.Then,it integrated the point,line,and IMU data in the back-end optimization effectively and established the minimized objective function for optimization to obtain a more accurate camera pose.Finally,this paper conducted experimental verification on the EuRoC dataset and real corridor scenes.The experiments show that the proposed algorithm can effectively improve the quality and speed of line feature extraction while effectively improving the localization accuracy of the SLAM system and obtaining a richer point-line structure map.

关 键 词:同步定位与建图 线特征提取 几何约束 后端优化 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象