混沌理论和支持向量机的就业率预测  被引量:1

Research on Employment Forecast Based on Chaos Theory and Support Vector Machine

在线阅读下载全文

作  者:吴苏礼 雷双媛[1] 王冠卓[1] 刘大旭[1] WU Suli;LEI Shuangyuan;WANG Guanzhuo;LIU Daxu(Jiamusi campus,Heilongjiang University of Chinese Medicine,Harbin 150040,China)

机构地区:[1]黑龙江中医药大学,佳木斯学院,黑龙江哈尔滨150040

出  处:《微型电脑应用》2023年第1期69-72,共4页Microcomputer Applications

基  金:2019年度黑龙江中医药大学科研基金项目(2019MS35)。

摘  要:就业率预测具有较强复杂性,为此提出了基于混沌理论和支持向量机的就业率预测方法,用以降低就业率预测误差。按照混沌变量运动自身规律使用越界处理优化混沌算法跳出局部最优提升搜索精度;运用支持向量机拟合就业率预测非线性关系,构建基于支持向量机的就业率预测模型,并使用K邻近算法,构建样本数据集;运用经过优化的混沌粒子群算法优化支持向量机参数,训练数据样本集,构建改进支持向量机的就业率预测模型实现预测。通过实验验证,该方法具有较强的训练能力和较低的模型复杂程度且训练时间较快,预测高校毕业生就业率误差较低,具有良好的预测精度。Employment rate prediction has strong complexity, this paper applies chaos theory and support vector machine-based employment rate prediction methods to reduce the employment rate prediction error. By using the algorithm to fit the nonlinear relationship, we construct the employment rate prediction model based on SCM, use the k neighboring algorithm, optimize the parameters, train the data sample set and build the employment rate prediction model to achieve prediction. Through experimental verification, the proposed method has strong training ability and low model complexity and fast training time, low prediction employment rate error and good prediction accuracy.

关 键 词:混沌理论 支持向量机 粒子群 LOGISTIC模型 非线性关系 

分 类 号:TM732[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象