检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:齐歌 李敬业 马丁[2] 孙浩锋 QI Ge;LIJing-ye;MA Ding;SUN Hao-feng(School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China;School of Artificial Intelligence and Big Data,Henan University of Technology,Zhengzhou 450001,China)
机构地区:[1]郑州大学电气工程学院,河南南郑州450001 [2]河南工业大学人工智能与大数据学院,河南郑州450001
出 处:《控制工程》2023年第1期134-140,共7页Control Engineering of China
基 金:河南省自然科学基金资助项目(182300410182)。
摘 要:针对永磁同步电动机传统无差拍电流预测控制中电流采样等数字延迟而导致的跟踪误差大、控制精度低等问题,提出一种带有预测电流误差校正环节的两步预测控制方法。传统速度环采用PI控制会使系统仍存在启动超调、动态响应时间长、抗负载扰动能力差等缺陷,因此,在改进型无差拍电流预测控制的基础上,速度环采用基于负载扰动补偿的模型预测速度控制策略,构建内模控制观测器(internal model control observer,IMCO)来估计负载扰动进而对速度环输出值进行前馈补偿。在Simulink环境下进行仿真,通过仿真结果对比可知,所提方法具有响应快、超调小、静态误差小的特点,可提高系统的抗负载扰动性能和稳定性。Aiming at the large tracking error and low control accuracy caused by digital delays such as current sampling in traditional deadbeat current predictive control of permanent magnet synchronous motors,a two-step predictive control method with predictive current error correction is proposed.The traditional speed loop utilizes PI control,which make the system still have defects such as start-up overshoot,long dynamic response time,and poor anti-load disturbance ability.Therefore,on the basis of the improved deadbeat current predictive control,the speed loop uses a model predictive speed control strategy based on load disturbance compensation,and an internal model control observer(IMCO)is constructed to estimate the load disturbance and perform feedforward compensation for the output value of the speed loop.The simulation results are compared and verified in simulink environment,the proposed method has the characteristics of fast response,small overshot and small static error,and it can improve the anti-load disturbance performance and stability of the system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68