检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈少淼 陈瑞 梁伟[1] 李仁发 李智勇 CHEN Shao-Miao;CHEN Rui;LIANG Wei;LI Ren-Fa;LI Zhi-Yong(School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)
机构地区:[1]湖南科技大学计算机科学与工程学院,湖南湘潭411201 [2]湖南大学信息科学与工程学院,湖南长沙410082
出 处:《软件学报》2023年第2期565-581,共17页Journal of Software
基 金:国家重点研发计划(2018YFB1308604);国家自然科学基金(61906065,U21A20518,61976086,U21A20518);湖南省自然科学基金(2020JJ5200);湖南科技大学博士科研启动基金(E51973);国家电网公司科学技术项目(5100-202123009A)。
摘 要:约束优化是多数实际工程应用优化问题的呈现方式.进化算法由于其高效的表现,近年来被广泛应用于约束优化问题求解.但约束条件使得问题解空间离散、缩小、改变,给进化算法求解约束优化问题带来极大挑战.在此背景下,融合约束处理技术的进化算法成为研究热点.此外,随着研究的深入,近年来约束处理技术在复杂工程应用问题优化中得到了广泛发展,例如多目标、高维、等式优化等.根据复杂性的缘由,将面向复杂约束优化问题的进化优化分为面向复杂目标的进化约束优化算法和面向复杂约束场景的进化算法两种类别进行综述,其中,重点探讨了实际工程应用的复杂性对约束处理技术的挑战和目前研究的最新进展,并最后总结了未来的研究趋势与挑战.Most of engineering optimization problems can be formulated as constrained optimization problems.Evolutionary algorithms have been widely used in optimization constrained problems in recent years due to their sound performance.Nevertheless,the constraints make the solution space of the problem discrete,shrink and change,which bring great challenges to the evolutionary algorithm to solve the constrained optimization problem.The evolutionary algorithm integrating constraint handling technology has become a research hotspot.In addition,constraint processing techniques have been widely developed in the optimization of complex engineering application problems with the deepening of research in recent years,such as multi-objective,high-dimensional,equality constraint,etc.This study divides the evolutionary optimization for complex constraint optimization problems into evolutionary optimization algorithms for complex objectives and evolutionary algorithms for complex constraint scenarios according to the complexity.The challenges of constraint handling technology due to the complexity of practical engineering applications and the latest research progress in current research are discussed.Finally,the future research trends and challenges are summarized.
关 键 词:约束优化 进化算法 多目标 高维 高计算开销 等式约束
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117