基于可形变卷积与SimAM注意力的密集柑橘检测算法  被引量:5

Dense citrus detection algorithm based on deformable convolution and SimAM attention

在线阅读下载全文

作  者:李子茂[1,2] 李嘉晖 尹帆 帖军[1,2] 吴钱宝 Li Zimao;Li Jiahui;Yin Fan;Tie Jun;Wu Qianbao(College of Computer Science,South-Central Minzu University,Wuhan,430074,China;Hubei Provincial Engineering Research Center of Agricultural Blockchain and Intelligent Management,Wuhan,430074,China;Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises,Wuhan,430074,China)

机构地区:[1]中南民族大学计算机科学学院,武汉市430074 [2]农业区块链与智能管理湖北省工程研究中心,武汉市430074 [3]湖北省制造企业智能管理工程技术研究中心,武汉市430074

出  处:《中国农机化学报》2023年第2期156-162,F0002,共8页Journal of Chinese Agricultural Mechanization

基  金:国家民委中青年英才培养计划(MZR20007);湖北省科技重大专项(2020AEA011);武汉市科技计划应用基础前沿项目(2020020601012267);中南民族大学研究生创新基金(3212022sycxjj328)。

摘  要:针对现有检测算法难以检测自然场景下小而密集的柑橘问题,提出一种DS-YOLO(Deformable Convolution SimAM YOLO)密集柑橘检测算法。引入可形变卷积网络(Deformable Convolution)代替原YOLOv4中的特征提取网络部分卷积层,使特征提取网络能自适应提取遮挡、重叠等导致柑橘形状信息缺失的位置特征,在特征融合模块中,增加新的检测尺度并融合SimAM注意力机制,增强模型对于小而密集柑橘特征的提取能力。试验结果表明:DS-YOLO算法相较于原YOLOv4准确率提高8.75%,召回率提高7.9%,F1分数提高5%,能够较准确检测自然环境下的密集柑橘目标,为密集水果产量预测和采摘机器人提供了有效的技术支持。Aiming at the problem that existing detection algorithms are difficult to detect small and dense citrus in natural scenes, a DS-YOLO(Deformable Convolution SimAM YOLO) algorithm for dense citrus detection is proposed. Deformable convolution is introduced to extract partial convolution layers of the network instead of the features in the original YOLOv4. The feature extraction network adaptively extracts the location features that result in missing citrus shape information, such as occlusion and overlap. In the feature fusion module, a new detection scale is added and the SimAM attention mechanism is fused to enhance the model’s ability to extract small and dense citrus features. The results show that the DS-YOLO algorithm improves the accuracy by 8.75%, recall by 7.9%, and F1 by 5% compared with the original YOLOv4 algorithm. It can detect dense citrus targets of the natural environment more accurately and provide effective technical support for dense fruit yield prediction and harvesting robots.

关 键 词:目标检测 特征提取 密集柑橘 可形变卷积 SimAM注意力 

分 类 号:S666[农业科学—果树学] TP391.4[农业科学—园艺学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象