检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李旭 赖祥威 曹继翔 张凌寒 周向东 郑万波 夏云霓[3] 崔俊飞 LI Xu;LAI Xiangwei;CAO Jixiang;ZHANG Linghan;ZHOU Xiangdong;ZHENG Wanbo;XIA Yunni;CUI Junfei(School of Science,Kunming University of Science and Technology,Kunming Yunnan 650500,China;China Railway First Group Fourth Engineering Company Limited,Xianyang Shaanxi 610400,China;School of Computer Science,Chongqing University,Chongqing 400030,China;Chongqing Research Institute Company Limited,China Coal Technology&Industry Group,Chongqing 400037,China)
机构地区:[1]昆明理工大学理学院,昆明650500 [2]中铁一局集团第四工程有限公司,陕西咸阳610400 [3]重庆大学计算机学院,重庆400030 [4]中煤科工集团重庆研究院有限公司,重庆400037
出 处:《计算机应用》2022年第S02期315-319,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(62172062,62162036)。
摘 要:针对统计学习和机器学习方法难以对瓦斯浓度序列数据准确预测的问题,提出一种基于长短期记忆(LSTM)-门控循环单元(GRU)神经网络的瓦斯浓度序列预测算法。首先对数据进行划分和归一化;接着引入LSTM神经网络细胞和GRU神经网络细胞处理具有时序性的历史瓦斯浓度序列数据,设计网络结构学习瓦斯浓度序列内部动态变化规律,以误差损失最小化为目标,得到预测方法完成瓦斯浓度预测。以吉林八连城瓦斯浓度监控数据为实例,采用所提算法进行瓦斯预测,并与单一LSTM神经网络、GRU神经网络和多层感知机(MLP)进行对比。实验结果表明,对于一年(长期)南11902上顺工作面的训练集和测试集,所提算法较MLP的均方根误差(RMSE)分别降低了4.227%和3.559%;对于一年(长期)72305上顺回风的训练集和测试集,所提算法较MLP的均方根误差分别降低了7.846%和10.323%,均表现出更高的预测精度。Aiming at the problem that statistical learning and machine learning methods were difficult to accurately predict gas concentration sequence data,a gas concentration sequence prediction algorithm based on Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)neural network was proposed.First,the data was divided and normalized.Then LSTM neural network cells and GRU neural network cells were introduced to process the temporal historical gas concentration sequence data.The network structure was designed to learn the internal dynamic change law of gas concentration sequence,the prediction algorithm was obtained by minimizing the error loss to complete the gas concentration prediction.Taking the monitoring data of gas concentration in Balian City of Jilin as an example,the proposed algorithm was used to predict gas,and compared with single LSTM neural network,GRU neural network and Multi-Layer Perceptron(MLP).The experimental results show that for the training set and test set of the 1-year(long-term)south 11902 upward working face,the Root Mean Square Error(RMSE)of the proposed algorithm is 4.227%and 3.559%lower than that of the MLP respectively.For the training set and test set of 1-year(long-term)72305 downwind,the RMSE of the proposed algorithm is 7.846%and 10.323%lower than that of MLP respectively,showing higher prediction accuracy.
关 键 词:瓦斯预测 长短期记忆网络 门控循环单元 多层感知机 神经网络
分 类 号:TD713[矿业工程—矿井通风与安全] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147