检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于淼[1] 许铮铧 Yu Miao;Xu Zhenghua(School of Life Science and Health Engineer,Hebei University of technology,Tianjin 300400,China)
机构地区:[1]河北工业大学生命科学与健康工程学院,天津300400
出 处:《中国生物医学工程学报》2022年第6期724-731,共8页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金青年基金(61906063)。
摘 要:医学图像作为辅助医生诊断和治疗的重要手段,其清晰度对临床医疗的重要性不言而喻。生成对抗网络(GAN)独特的对抗训练思想在图像生成任务中展现出强大的学习能力,因其能生成高质量的样本,故在计算机视觉领域的研究前景光明。针对GAN应用于医学图像去噪任务进行概括和总结。首先介绍GAN的基础理论和优缺点;然后对适用于医学图像去噪的GAN的衍生模型进行详细介绍,总结有助于提升GAN医学图像去噪性能的各种损失函数及其作用,以及其他可以嵌套在GAN模型中并对医学图像去噪起辅助作用的深度学习类框架;并总结提升医学图像去噪的GAN网络性能的方法;最后探讨了GAN用于医学图像去噪的应用前景、面临的挑战以及未来可能的研究方向。As an important means to assist the detection of diseases and make better diagnostic decisions,the definition of medical image is of great significance for clinical treatment.The unique confrontation training idea of generative adversarial network(GAN)can generate high-quality samples.The success in the field of computer vision makes GAN a bright prospect.In this article,the application of GAN in medical image denoising was reviewed.Firstly,the basic theory,advantages and disadvantages of GAN were introduced.Then,the derivation model of GAN for medical image denoising was introduced in detail,and various loss functions that can help improve the denoising performance of GAN for medical images were summarized.And other deep learning frameworks,which can be nested into the GAN model and play an auxiliary role in medical image denoising,were presented as well.The methods to improve the performance of GAN network for medical image denoising were summarized.Finally,the application prospects,challenges and possible future research directions of GAN in medical image denoising were discussed.
关 键 词:生成对抗网络(GAN) 深度学习 噪声 医学图像去噪 损失函数
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49