5类图的优美性  

Gracefulness of Five Kinds of Graphs

在线阅读下载全文

作  者:唐保祥[1] 任韩 TANG Baoxiang;REN Han(School of Mathematics and Statistics,Tianshui Normal University,Tianshui 741001,Gansu Province,China;School of Mathematical Sciences,East China Normal University,Shanghai 200062,China)

机构地区:[1]天水师范学院数学与统计学院,甘肃天水741001 [2]华东师范大学数学科学学院,上海200062

出  处:《吉林大学学报(理学版)》2023年第1期79-84,共6页Journal of Jilin University:Science Edition

基  金:国家自然科学基金(批准号:11171114)。

摘  要:用构造方法给出图K_(2,n)-1-3-K_(3),K_(2,n)-2-2-K_(3),K_(2,n)-1-2-K_(3),K_(2,n)-2-K_(3)和K_(2,n)-3-P_(3)的优美标号,并证明这五类图都是优美图.当n≤5时,K_(2,n)-1-3-K_(3),K_(2,n)-2-2-K_(3),K_(2,n)-1-2-K_(3)和K_(2,n)-3-P_(3)都是极小优美图,并给出对应长度尺子刻度数最少的15组刻度值.The graceful labels of graphs K_(2,n)-1-3-K_(3),K_(2,n)-2-2-K_(3),K_(2,n)-1-2-K_(3),K_(2,n)-2-K_(3) and K_(2,n)-3-P_(3)were given by the construction method,and it was proved that these five kinds of graphs were all graceful graphs.When n≤5,K_(2,n)-1-3-K_(3),K_(2,n)-2-2-K_(3),K_(2,n)-1-2-K_(3) and K_(2,n)-3-P_(3) were all extremely minimal graceful graph,from which the 15 groups of scale values with the least number of scales for the corresponding length ruler were given.

关 键 词:优美图 优美标号 完全二部图 极小优美图 省刻度尺 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象