基于多维缩放和KICIC的电力负荷聚类  被引量:3

Power Load Curve Clustering Research Based on Multi-dimensional Scaling and KICIC

在线阅读下载全文

作  者:刘诗语 吴鸣 李睿哲 LIU Shi-yu;WU Ming;LI Rui-zhe(School of Electronics and Information Engineering,Shanghai Electric Power University,Shanghai 200090,China;China Electric Power Research Institute Co.,Ltd.,Beijing 100192,China)

机构地区:[1]上海电力大学电子与信息工程学院,上海200090 [2]中国电力科学研究院有限公司,北京100192

出  处:《科学技术与工程》2023年第3期1096-1103,共8页Science Technology and Engineering

基  金:国家自然科学基金(51877201)。

摘  要:电力负荷曲线聚类在电力大数据研究中有重要的应用。针对传统负荷聚类方法难以有效处理海量化的高维负荷数据,以及存在簇间样本模糊导致算法聚类质量不高、聚类效率低下等问题,提出一种结合多维缩放(multi-dimensional scaling,MDS)和一种新的集成簇间、簇内欧式距离的加权K-means方法(weighting k-means clustering approach by integrating intra-cluster and inter-cluster distances,KICIC)的聚类算法(MDS-KICIC)。该方法首先采用MDS算法对高维负荷数据进行数据降维处理,得到降维后的低维矩阵和归一化的特征值向量作为KICIC算法的输入矩阵和权重向量,KICIC通过在子空间内最大化簇中心与其他簇数据对象的距离来融合簇内和簇间的距离进行聚类,得到最终聚类结果。通过算例表明该方法运算时间短、聚类质量高,进一步提高了负荷曲线的聚类性能。Power load curve clustering has important applications in the research of power big data.To address the problems that traditional load clustering methods are difficult to effectively deal with the increasingly massive and high-dimensional load data,and there are problems such as poor quality of algorithm clustering due to the ambiguity of inter-cluster samples and low efficiency of clustering,a new weighting K-means approach combining multi-dimensional scaling(MDS)and a weighting K-means clustering approach by integrating intra-cluster and inter-cluster distances(KICIC)clustering algorithm(MDS-KICIC)were propose.The method first uses the MDS algorithm to reduce the dimensionality of the high-dimensional load data and obtains the reduced distance matrix and norma-lized eigenvalue vector as the input matrix and weight vector of the KICIC algorithm,and the KICIC clusters the intra-cluster and inter-cluster distances by maximizing the distance between the cluster center and other cluster data objects in the subspace to obtain the final clustering results.The arithmetic example shows that the method has short operation time and high clustering quality,which further improves the clustering performance of the load curve.

关 键 词:负荷曲线聚类 多维缩放 特征加权 类间距离 

分 类 号:TM933[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象