检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢东祥[1] LU Dongxiang(Yancheng Normal University,Yancheng 224002,China)
机构地区:[1]盐城师范学院,江苏盐城224002
出 处:《电子科技》2023年第3期81-86,共6页Electronic Science and Technology
基 金:江苏省高校自然科学研究重大项目(20KJA190001)。
摘 要:为了进一步提高城市道路交通网络的通行效率,粒子群优化和神经网络等多种智能优化算法受到越来越多的关注。近年来,深度学习技术的普及与应用大幅提升了城市交通网络的节点识别效率,而交通网络的节点调度又扩展了深度学习技术的应用。文中详细分析了交通节点调度所面临的关键问题,归纳并总结了相关网络节点分配的研究现状。在此基础上,深入研讨了城市交通网络节点调度与深度学习的应用前景,并对交通网络节点分配优化策略的未来研究方向进行了展望。In order to further improve the traffic efficiency of urban road traffic network, a variety of intelligent optimization algorithms such as particle swarm optimization algorithm and neural network algorithm have attracted extensive attention. Recently, the popularization and application of deep learning technology has greatly improved the efficiency of node identification of urban traffic network, and the node scheduling of traffic network has expanded the application of deep learning technology. In this study, the key problems of traffic node scheduling are analyzed in detail, and the research status of relevant network node allocation is summarized. On this basis, the proposed study thoroughly discusses and analyzes the application prospect of node scheduling and deep learning in urban transportation network, and prospects the future research direction of node allocation optimization strategy in transportation network.
关 键 词:交通网络 节点调度 深度学习 机器学习 车联网 智能算法 启发式搜索 协同控制
分 类 号:TN929.5[电子电信—通信与信息系统] U495[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.76