检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈路桥 倪千喜 李啸洲 曹锦佳[1] Chen Luqiao;Ni Qianxi;Li Xiaozhou;Cao Jinjia(School of Nuclear Science and Technology,University of South China,Hengyang 421001,China;Department of Radiation Oncology,Hunan Cancer Hospital,Affiliated Cancer Hospital of Xiangya School of Medicine,Central South University,Changsha 410013,China;Department of Emergency Medicine,Second Xiangya Hospital,Central South University,Changsha 410001,China)
机构地区:[1]南华大学核科学技术学院,衡阳421001 [2]湖南省肿瘤医院中南大学湘雅医学院附属肿瘤医院放疗科,长沙410013 [3]中南大学湘雅二医院急诊医学科,长沙410001
出 处:《中华放射医学与防护杂志》2023年第2期101-105,共5页Chinese Journal of Radiological Medicine and Protection
基 金:湖南省科技创新计划资助项目(2021SK51116);湖南省卫生健康委科研计划项目(202109031926);南华大学研究生教改项目(213YXJ032)。
摘 要:目的利用放射组学特征构建不同的机器学习分类模型,预测盆腔肿瘤调强放疗剂量验证的γ通过率,并探讨最佳预测模型。方法回顾性分析196例盆腔肿瘤调强放疗计划,采用基于模体测量方式的三维剂量验证结果,γ通过率标准为3%/2 mm、10%剂量阈值。提取基于剂量文件的放射组学特征构建预测模型。分别采用随机森林、支持向量机、自适应增强和梯度提升决策树4种机器学习算法,计算曲线下面积(AUC)值、敏感度和特异度,评估4种预测模型的分类性能。结果随机森林、支持向量机、自适应增强、梯度提升决策树模型的灵敏度和特异度分别为0.93、0.85,0.93、0.96,0.38、0.69,0.46、0.46。随机森林模型和自适应增强模型的AUC值分别为0.81和0.82,支持向量机和梯度提升决策树模型的AUC值为0.87。结论针对盆腔肿瘤调强放疗计划,可以采用基于放射组学特征的机器学习方法来构建γ通过率的预测模型。支持向量机模型和梯度提升决策树模型的分类性能要优于随机森林模型、自适应增强模型。Objective Based on radiomics characteristics,different machine learning classification models are constructed to predict the gamma pass rate of dose verification in intensity-modulated radiotherapy for pelvic tumors,and to explore the best prediction model.Methods The results of three-dimensional dose verification based on phantom measurement were retrospectively analyzed in 196 patients with pelvic tumor intensity-modulated radiotherapy plans.The gamma pass rate standard was 3%/2 mm and 10%dose threshold.Prediction models were constructed by extracting radiomic features based on dose documentation.Four machine learning algorithms,random forest,support vector machine,adaptive boosting,and gradient boosting decision tree were used to calculate the AUC value,sensitivity,and specificity respectively.The classification performance of the four prediction models was evaluated.Results The sensitivity and specificity of the random forest,support vector machine,adaptive boosting,and gradient boosting decision tree models were 0.93,0.85,0.93,0.96,0.38,0.69,0.46,and 0.46,respectively.The AUC values were 0.81 and 0.82 for the random forest and adaptive boosting models,respectively,and 0.87 for the support vector machine and gradient boosting decision tree models.Conclusions Machine learning method based on radiomics can be used to construct a prediction model of gamma pass rate for specific dosimetric verification of pelvic intensity-modulated radiotherapy.The classification performance of the support vector machine model and gradient boosting decision tree model is better than that of the random forest model and adaptive boosting model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4