基于熵权距离的图正则局部线性嵌入算法  被引量:1

Graph Regular Local Linear Embedding Algorithm Based on Entropy Weight Distance

在线阅读下载全文

作  者:李宏[1] 王静[1] 李跃波 李富[3] LI Hong;WANG Jing;LI Yue-bo;LI Fu(School of Electrical and Information Engineering,Northeast Petroleum University;Digital Operation and Maintenance Center,No.1 Oil Production Plant of Daqing Oilfield;No.1 Drilling Company,Daqing Drilling Engineering Company)

机构地区:[1]东北石油大学电气信息工程学院 [2]大庆油田第一采油厂数字化运维中心 [3]大庆钻探工程公司钻井一公司

出  处:《化工自动化及仪表》2023年第2期216-222,261,共8页Control and Instruments in Chemical Industry

摘  要:针对局部线性嵌入(Locally Linear Embedding,LLE)算法在挖掘数据结构时未考虑特征权重且仅局限于数据的线性拟合关系,导致特征提取效果不佳的问题,提出一种基于熵权距离的图正则局部线性嵌入(Graph Regular Local Linear Embedding Algorithm Based on Entropy Weight Distance,EWD-GLLE)算法。首先,采用信息熵加权的余弦距离划分样本邻域,减小不重要特征对邻域划分的影响,提高了邻域划分的准确性;然后,利用融合热核权重与余弦权重的拉普拉斯图约束低维嵌入,以保留更多的原始数据信息,进而提取到更显著的特征。在两种轴承数据集上的实验结果表明:EWD-GLLE算法的特征提取性能明显优于LLE、LTSA、LDA算法。Considering the fact that the locally linear embedding(LLE) algorithm does’ t consider the feature weight and is limited to the linear fitting relationship of data when mining the data structure and it results in poor effect in the feature extraction, a graph regular local linear embedding algorithm based on e-ntropy weight distance(EWD-GLLE) algorithm was proposed. Firstly, it has the cosine distance which weighted by information entropy adopted to divide the sample neighborhood so as to reduce the influence of unimportant features on the neighborhood division and improve its accuracy thereof;then, it has the Laplacian graph which combining the thermal kernel weight and cosine weight employed to constrain the low-dimensional embedding and to retain more original data information and extract more significant fea-tures. Experiments on two bearing data sets show that, the feature extraction performance of EWD-GLLE algorithm outperforms LLE,LTSA and LDA algorithms significantly.

关 键 词:局部线性嵌入 拉普拉斯特征映射 熵权距离 余弦高斯核函数 轴承故障诊断 特征提取 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象