检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周金[1] 李玉芝[1] 李斌[1] ZHOU Jin;LI Yuzhi;LI Bin(Institute of Science and Technology,Tianjin University of Finance and Economics,Tianjin 300221,China)
出 处:《电子与信息学报》2023年第3期1102-1110,共9页Journal of Electronics & Information Technology
基 金:教育部人文社会科学研究规划基金(19YJA630046);天津市教委科研计划项目(2021SK102)。
摘 要:针对强噪声环境下频谱感知方法计算复杂度高、难以获取大量标注样本、检测准确率低等问题,该文提出由图像去噪和图像分类思想驱动的频谱感知方法(IDCSS)。首先,对感知用户的接收信号进行时频变换,将无线电数值信号转换为图像。强噪声环境下感知用户接收信号图像与噪声图像相关度高,因此搭建生成对抗网络(GAN)来增加低信噪比下接收信号样本的数量,提高图像的质量。在生成器中,利用残差-长短时记忆网络取代生成网络U-Net结构中的跳跃连接,对图像进行去噪、提取感知用户接收信号图像的多尺度特征、建立基于熵的损失函数来构建网络的抗噪能力;在判决器中,设计适用无线电图像信号的多维度判决器来增强生成图像的质量、保留低信噪比感知用户信号的图像细节。最后利用分类器识别频谱占用状态。仿真结果表明,与现有频谱感知算法相比,所提算法具有较好的检测性能。To resolve the problems of high computational complexity in strong noise environment,infeasibility of gaining large number of labeled samples and low detection probability,an Image Denoising and Classification driven Spectrum Sensing(IDCSS)method is proposed.Firstly,time-frequency transformation is employed to convert radio numerical signals into images.Then,as received signals of cognitive users and noise are highly correlated under strong noise environments,a novel Generative Adversarial Network(GAN)is designed to enhance the number and quality of samples of cognitive user signals.In the generator,residual-long-short-term memory network is designed to replace U-Net skip connection,realizing denoising and multi-scale features extraction.Loss function based on entropy is designed to optimize robustness to noise.A multi-dimensional discriminator is designed to enhance the quality of the generated image and retain the image details of the low signal-to-noise ratio cognitive user signals.Finally,the generated high-quality samples are used as labeled data,and the real samples combine to train the classifier to realize the recognition and classification of the spectrum occupancy state.Simulation results show that the proposed algorithm has better detection performance by comparing it with the state-of-the-art methods.
关 键 词:频谱感知 图像去噪 生成对抗网络 损失函数 检测概率
分 类 号:TN929.5[电子电信—通信与信息系统] TN911.73[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.21.235