未知时变环境下采摘机器人电液伺服控制系统  被引量:1

Electro-hydraulic Servo Control System of Picking Robot under Unknown Time-varying Environment

在线阅读下载全文

作  者:程培宝[1] 康满仓 CHENG Peibao;KANG Mancang(School of Electromechanical Information,Baoji Vocational and Technology College,Baoji 721013,China;Grinding Machine Research Institute,Shaanxi Qinchuan Grander Machine Tools Co.,Ltd.,Baoji 721399,China)

机构地区:[1]宝鸡职业技术学院机电信息学院,陕西宝鸡721013 [2]陕西秦川格兰德机床有限公司磨床研究所,陕西宝鸡721399

出  处:《机械与电子》2023年第3期55-59,64,共6页Machinery & Electronics

摘  要:为保证采摘机器人在未知时变环境下的控制稳定性和机器人末端执行器的位置执行精度,优化采摘机器人电液伺服控制系统。系统基于直流电动机驱动机器人各个关节,构建采摘机器人电液伺服控制系统的数学模型;通过加权自扰动递推最小二乘法辨识采摘机器人接触动力学模型实时控制参数后,结合小脑神经网络和PID算法,分别实现前馈控制和反馈控制,以此优化采摘机器人电液伺服控制系统。结果表明:优化后系统具备较好的控制参数辨识效果,机器人末端执行器在3个方向的误差接近于0;可在2 s内完成控制,超调量在2%以内;控制机器人在静态和动态2种状态下,液压缸活塞的位移结果均低于1.6 cm。In order to ensure the control stability of the picking robot in unknown time-varying environment and the position execution accuracy of the robot end effector,the electro-hydraulic servo control system of the picking robot is optimized.Based on the DC motor driving each joint of the robot,the mathematical model of the electro-hydraulic servo control system of the picking robot is constructed.After identifying the real-time control parameters of the contact dynamic model of the picking robot by the weighted auto disturbance recursive least square method,combined with the cerebellar neural network and PID algorithm,the feedforward control and feedback control are realized respectively,so as to optimize the electro-hydraulic servo control system of the picking robot.The test results show that the optimized system has good control parameter identification effect,and the error of robot end effector in three directions is close to 0.The control can be completed within 2 s,and the overshoot is within 2%.The displacement results of the hydraulic cylinder piston of the control robot in both static and dynamic states are less than 1.6 cm.

关 键 词:时变环境 采摘机器人 电液伺服控制 控制参数 末端执行器 前馈控制 

分 类 号:TP242.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象